МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ И.о. директора ИШПР Н.В. Гусева «30» июня 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

Математическое моделирование процессов транспорта жидких и газообразных сред

Направление подготовки/ специальность	21.04.0	1 «Нефтегазово	е дело»
Образовательная программа (направленность (профиль))	Надежность и безопасность объектов транспорта и хранения углеводородов		
Специализация	Надежность и безопасность объектов транспорта и хранения углеводородов		
Уровень образования	высшее образование – магистратура		
Курс	1	семестр	1
Трудоемкость в кредитах (зачетных единицах)	3		
Виды учебной деятельности		Време	нной ресурс
		Лекции	8
Контактная (аудиторная)	Практические занятия		16
работа, ч	Лабораторные занятия		24
	ВСЕГО		48
Ca	Самостоятельная работа, ч		ч 60
ИТОГО, ч 108			ч 108

Вид промежуточной аттестации	зачет	Обеспечивающее подразделение	ОНД
И.о. заведующего кафедрой -			И.А. Мельник
руководитель отделения			
нефтегазового дела на правах			
кафедры			
Руководитель ООП	Me	Miloury	А.В. Шадрина
Преподаватель		Jeff 1	С.Н. Харламов
		- / //	

1. Цели освоения дисциплины

Целями освоения дисциплины «**Математическое моделирование процессов транспорта жидких и газообразных сред**» является формирование у обучающихся определенного ООП (п. 5.4 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

		Индикаторы достижения компетенций		Составляющие результатов освоения (дескрипторы компетенции)	
Код компетенции	Наименование компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
УК(У)-4	Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия	И.УК(У)-4.3	Представляет результаты академической и профессиональной деятельности на различных научных мероприятиях, включая международные	УК(У)-4.333 УК(У)-4.3У3 УК(У)-4.3В3	Знает правила и закономерности личной и деловой устной и письменной коммуникации Умеет логически верно, аргументировано и ясно строить устную речь, в том числе на иностранном языке Владеет опытом представления результатов академической и профессиональной деятельности
		И.ОПК(У)-1.1	Демонстрирует навыки физического и программного моделирования отдельных фрагментов процесса выбора оптимального варианта для конкретных условий	ОПК(У)- 1.131 ОПК(У)- 1.1У1 ОПК(У)- 1.1В1	Знает методы и средства формализации данных, собственно моделирования, постановки различных задач и решения их на модели, а также интерпретации результатов моделирования Умеет применять средства физического и программного моделирования отдельных фрагментов процесса выбора оптимального варианта для конкретных условий Владеет навыками решения задач в своей предметной области на основе физического и программного моделирования
ОПК(У)-1	Способен решать производственные и (или) исследовательские задачи на основе фундаментальных знаний в нефтегазовой области	И.ОПК(У)-1.2	Использует фундаментальные знания профессиональной деятельности для решения конкретных задач нефтегазового производства	ОПК(У)- 1.232 ОПК(У)- 1.2У2 ОПК(У)- 1.2В2	Знает основные профессиональные программные комплексы в области математического моделирования технологических процессов и объектов трубопроводного транспорта углеводородов Умеет применять математические, естественнонаучные и общеинженерные знания в профессиональной деятельности Владеет опытом разработки физических, математических и компьютерных моделей исследуемых процессов, явлений и объектов, относящихся к трубопроводному транспорту углеводородов

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы, модуль общепрофессиональных дисциплин.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Планируемые результаты обучения по дисциплине	Индикатор достижения
Код	Наименование	компетенции
РД 1	Представлять результаты математического моделирования процессов переноса тепла, массы и импульса при течении реологически сложных гомогенных и гетерогенных сред в устройствах и элементах аппаратов нефтегазовой отрасли с целью уяснения и прогноза оптимальных и эффективных режимов их функционирования в: 1) выступлениях на всероссийских и международных научных конференциях и симпозиумах (Томск, НИ ТПУ, "Проблемы геологии и освоения недр"); 2) заключениях и рекомендациях в практику прикладных исследований процессов в форме доклада, сообщения, экспертного заключения по направлению процессы гидро-,газо-, термо-, массо-, электро- и магнитодинамики и тепломассопереноса в задачах НГО.	И.УК(У)-4.3
РД 2	Знать и применять основы теорий и методов: 1) механики гомогенных и гетерогенных неоднородных сплошных сред; 2) турбулентности, сопротивления и тепломассопереноса; 3) аналитического и численного моделирования дифференциальных уравнений математической физики для: - решения задач транспорта УВ сред в нефтегазоносных бассейнах и специальном оборудовании; - очистки смесей в аппаратах нефтехимических технологий; - прогноза динамики флюидных гидротермальных систем в процессах разработки и эксплуатации нефтяных скважин и месторождений.	И.ОПК(У)-1.1
РД 3	Применяет прикладные методики к: 1) исследованию режимов работы оборудования нефтегазовой отрасли, включающих сведения о современных подходах и методах описания гидродинамики и тепломассопереноса; 2) моделированию эндогенных процессов в задачах геодинамики, накопления и образования природного сырья в коллекторах на больших глубинах.	И.ОПК(У)-1.2
РД 4	Проводит работу по подготовке и защите проблемного доклада по вопросам математического моделирования в задачах НГО с целью получения опыта и знаний: 1) по современным проблемам, перспективам современных теорий описания явлений переноса в природном сырье и окружающей среде; 2) о постановках и методах решений задач математической физики в нефтегазовой гидродинамике и тепломассопереносе; 3) о верификации результатов моделирования и выдаче заключений в практику	И.ОПК(У)-1.1 И.ОПК(У)-1.1 И.УК(У)-4.3

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.		Лекции	1
Математические модели реальных явлений.		Практические занятия	2
Принципы построения физических и математических	РД2,	Лабораторные занятия	2
моделей.	РД4	Самостоятельная работа	6
Раздел (модуль) 2.	рит риз	Лекции	2
Методы математического моделирования процессов	РД1, РД3, РД4	Практические занятия	4
в задачах НГО (транспорта, хранения, добычи	1 4	Лабораторные занятия	6

сырья, очистки бурового оборудования, разработки и эксплуатации месторождений). Дискретизация определяющих уравнений математических моделей и краевых условий		Самостоятельная работа	6
Раздел (модуль) 3.		Лекции	2
Методы математического моделирования		Практические занятия	4
сопротивления, теплообмена и напряженно-	РД1, РД2,	Лабораторные занятия	8
деформируемого состояния трубопроводов и процессов их аварийного разрушения	РД1, РД2, РД4	Самостоятельная работа	6
Раздел (модуль) 4.		Лекции	2
Математические методы и модели		Практические занятия	4
гидрогазодинамики, теплообмена в технологиях	РД1, РД2, РД3 РД4	Лабораторные занятия	4
снижения затрат на транспорт газов и жидкостей, повышения эффективности НГО. Дифференциальные модели процессов переноса импульса, тепла и массы.		Самостоятельная работа	6
D () 5		Лекции	1
Раздел (модуль) 5.		Практические занятия	2
Анализ причин и механизмов моделирования	РД1, РД2,	Лабораторные занятия	4
воспламенения и горения метано-прорано-водородовоздушной смеси	РД3	Самостоятельная работа	6
Раздел (модуль) 6. Подготовка проблемного доклада	РД4	Самостоятельная работа	30

Содержание разделов дисциплины

Раздел (модуль) 1.

Математические модели реальных явлений. Принципы построения физических и математических моделей.

Теоретические модели, схематизация и постановка задач, экспериментальные методы исследований. Математическое моделирование на основе фундаментальных законов природы.

Темы лекций:

ЛК1	Математическое моделирование локальных и интегральных параметров			
открытых термодинамических систем в задачах НГО, природе				
	Уравнения математической физики в исследовании			
	гидрогазодинамических и тепловых процессов, климатических			
	характеристик и параметров состава грунтов.			

Темы практических занятий:

- 1. Жесткие и мягкие математические модели. Качественные методы исследования дифференциальных уравнений. Математические модели трудноформализуемых объектов.
- 2. Алгебраические и дифференциальные, интегральные и функциональные уравнения в комплексном физико-математическом моделировании.

Названия лабораторных работ:

1. Исследование эволюции структуры внутренних вязких потоков на дистальных участках и проксимальных областях каналов с произвольной границей поверхности стенки.

Раздел (модуль) 2.

Методы математического моделирования процессов транспорта природного сырья. Способы дискретизация определяющих уравнений математических моделей и краевых условий.

Определяющие уравнения к описанию гидрогазодинамики и тепломассопереноса. Элементы теории подобия. Безразмерная форма уравнений в описанию основных режимов течения и тепломассопереноса. Постановки задач к исследованию сопротивления и теплообмена в гомогенных и гетерогенных смесях. Методы верификации алгоритма и моделей течения и тепломассопереноса. Сравнительный анализ моделей и пакетов многоблочных вычислительных технологий при течении сложных сред.

Темы лекций:

ЛК2	Специальные задачи теорий сопротивления и теплопередачи, линейной и
	нелинейной механики сплошных сред, упругости и турбулентности.
пк3	Особенности моделирования и расчета сложных сдвиговых сред. Специальные
JIKS	способы фазового, термического разделения. Технологии моделирования
	течений и тепломассопереноса. Задачи Герца о сжатии упругих тел,
	теплообмене и сопротивлении в вязких средах.

Темы практических занятий:

- 3. Тепло-, гидро-, и газодинамические модели сплошных сред. Закономерности развития сред по пространству и времени в условиях неизотермичности и многомасштабности процессов переноса.
- 4. Течение в каналах и скважинах, сопряженные задачи тепло- и массообмена. Моделирование стационарных и нестационарных, изотермических и неизотермическое внутренних и внешних течений.

Названия лабораторных работ:

- 2. Исследование аксиального течения несжимаемой вязкой среды с эксцентрично расположенным ядром.
- 3. Течение в кольцевом зазоре при поступательном движении внутреннего ядра (цилиндра).
- 4. Ламинарное течение в узкой щели.

Раздел (модуль) 3.

Методы математического моделирования сопротивления, теплообмена и напряженно-деформируемого состояния трубопроводов и процессов их аварийного разрушения.

Теплообмен и сопротивление в трубах при переменных физических свойствах и граничных условиях 1-го рода в термическом начальном участке. Теплообмен при произвольном тепловом потоке на стенке канала. Метод суперпозиции. Влияние переменности физических свойств на трение и теплообмен при граничных условиях 2-го рода. Моделирование нагрузок на трубопровод в условиях стационарного и нестационарного ламинарного и турбулентного движения смесей. Процедура дискретизации уравнений. Анализ деталей процессов при пространственной деформации среды.

Темы лекций:

ЛК4	Задача-Гретца-Нуссельта в моделировании тепловых режимов для внутренних
	систем и методы ее решения.
ЛК5	Моделирование структуры потоков для внутренних и внешних задач механики
JIKS	сплошных сред. Нелинейности 1-3 рода в краевых задачах. Специальные методы

исследования сопряженных процессов в термодинамических системах.

Темы практических занятий:

- 6. Теплогидродинамическое подобие и метод анализа размерностей в задачах НГО.
- 7. Ламинарное изотермическое течение во внутренних системах, трубопроводах, каналах в условиях теплоизоляции и при наличии постоянного теплового потока к стенках. Асимптотическое решение для малых расстояний. Расчет профилей поля скорости и температуры при установившемся турбулентном течении в трубопроводах с идеально гладкой стенкой. Смешение двух потоков идеальных газов в трубопроводе в условиях стационарного турбулентного движения. Распределение концентраций в твердых стенках и в ламинарном потоке. Формулировки решений диффузионных задач.

Названия лабораторных

- 5. Тангенциальное течение неньютоновской жидкости в кольцевом канале.
- 6. Радиальное течение между коаксиальными цилиндрами.
- 7. Вычисление потерь на трение в каналах с криволинейной стенкой при изотермическом течении жидкости через диафрагму. Неньютоновские среды.
- 8. Одновременный тепло и массообмен. Задача о смешении жидкостей в рамках метода анализа размерностей к определению времени смешения.

Раздел (модуль) 4.

Математические методы и модели гидрогазодинамики, теплообмена в технологиях снижения затрат на транспорт газов и жидкостей. Дифференциальные модели процессов переноса импульса, тепла и массы.

Физико-математические основы моделирования турбулентности. Качественные представления о развивающихся течениях смесей. Динамика вихревых потоков. Уравнения Рейнольдса. Масштабы движения. Технологический расчет течений реологически сложных углеводородных сред в условиях устойчивого и переходного режимов. Процедура вычисления падания полного напора. Построение алгоритма определения поля давления в рециркуляционных внутренних потоках. Метод Л.М. Симуни

Темы лекций:

ЛК6	Фундаментальные положения статистической теории турбулентности. Подходы и
	методы исследования устойчивых и неустойчивых процессов в задачах НГО.
ЛК7	Модели и методы исследования внутренних потоков углеводородных сред в полях
JIIC	действия массовых сил.

Темы практических занятий:

- 8. Сопротивление и тепломассообмен, сопровождающийся гомогенной и гетерогенной химической реакцией.
- 9. Многокомпонентные системы. Термодиффузия. Бародиффузия. Динодиффузия.

Теория пограничного слоя. Приближенные методы. Точные решения для одновременного переноса тепла, массы и импульса.

10. Современные методы расчета турбулентного течения при граничных условиях 1 и 2 рода для тепловых процессов.

Названия лабораторных работ:

- 9. Закономерности распределения диффузионного поля вещества, исчезающего из объема в результате химической реакции при ламинарном или турбулентном течении во внутренних системах. Установить различия между процессами тепло- и массопереноса при миграции смесей в трубах, скважинах и отложений УВ в замкнутых областях.
- 10. Условия одновременного переноса тепла, массы и количества движения в гомогенных УВ смесях: метод аналогий и его значение в прогнозе явлений интенсификации переносов

- 11. Исследование процессов переноса методами теории подобия и анализа размерностей в исследованиях неизотермических течений гомогенных вязких сред в каналах.
- 12. Эффекты второго порядка в процессах переноса при течении смесей. Сопоставление эффектов: влияния массопереноса на одновременный теплоперенос и теплопереноса на сопутствующий ему массоперенос при движении УВ сред в узких пристеночных областях труб.

Раздел (модуль) 5.

Анализ причин и механизмов моделирования воспламенения и горения метанопрорано-водородо-воздушной смеси.

Общие замечания по физическому и математическому моделированию реагирующих смесей. Модели химических реакций. Технология численного алгоритма расчета химически реагирующей смеси. Анализ методов моделирования горения пропано-водородо-воздушной смеси. Интерпретация и визуализация результатов расчета сложных потоков.

Темы лекций:

ЛК8	Детали построения физико-математических моделей химически реагирующих
	сред.
	Основные численные методы в исследовании задач НГО. Рекомендации по
	контролю, управлению алгоритмом, обработке и интерпретации результатов
	исследования.

Темы практических занятий:

- 11. Численные методы решения краевых задач. Разностные уравнения. Модификация метода прогонки. Решение сопряженных задач гидродинамики и тепломассопереноса.
- 12. Технология численного анализа гидродинамики и теплообмена в трубопроводах переменного поперечного сечения.
- 13. Постановки и алгоритмы решения задач гидродинамики и тепломассопереноса при турбулентном течении с применением моделей турбулентности второго порядка.
- 14. Методы моделирования газовой опасности. Воспламенение смеси и тепловое поражение.
- 15. Краткий анализ методик расчета локальных и интегральных параметров при сложном течении смесей.

Названия лабораторных работ:

- 13. Исследование структуры гетерофазных сред в нефтяных скважинах и приповерхностных пластах. Построение карты режимов течений потоков.
- 14. Детали фильтрационных свободноконвективных течений флюидов в проницаемых зонах. Быстропротекающие явления.
- 15. Процессы смешанного тепломассопереноса в замкнутых областях и глубинных зонах. Определение зон основного сопротивления тепло- и массопереносу.
- 16. Процессы в прискваженных зонах. Моделирование двухфазных сред через рассмотрение совместного движения и деформирования обеих фаз с учетом механических и термодинамических эффектов, возникающих из-за несовпадения скоростей фаз.

Раздел (модуль) 6. Подготовка проблемного доклада

- 5. Организация самостоятельной работы студентов. Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:
 - Комплексная работа с лекционным материалом, а также поиск и обзор литературы, привлечение электронных источников информации по индивидуально заданной проблеме курса;

- *Изучение тем*, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации по проблемному направлению;
- **Критический анализ** научных публикаций по заранее определенной преподавателем теме исследования и моделирования задач НГО;
- **Вынесение на обсуждение и защиму** авторского материала темы исследования на специализированном семинаре МНОЛ "Нефтегазовая гидрогазодинамика и тепломассоперенос" (ОНД ИШ НИ ТПУ) с целью последующего представления работы на площадках отечественных и зарубежных конференций и симпозиумов.
- Подготовка к оценивающим мероприятиям (в рамках текущего контроля итогов самостоятельной работы выступают *4 ежемесячных коллоквиума*, определяющих готовность студента по теоретическим и практическим вопросам дисциплины).

Подготовка проблемного доклада

При самостоятельной работе студента и непосредственных консультаций с научным руководителем (преподавателем, обеспечивающим обучение по дисциплине) вырабатывается план работы по теме проблемного доклада с детализацией круга проблем, представляющих фундаментальное, научное и прикладное значение для науки и техники применительно к задачам математической физики и дифференциальным уравнениям в частных производных высшего порядка. Актуальность и диссертабильность материала иллюстрируют следующие предложения тем исследований.

Темы доклада:

- 1. Моделирование движения тяжёлого газа в приземном слое атмосферы.
- 2. Математическое моделирование нестационарных газожидкосных потоков: модель газопроявления при бурении скважин.
- 3. Моделирование процесса сепарации: повышение степени извлечения конденсирующихся УВ из нефтяного газа.
- 4. Процессы фильтрации жидкостей с применением современных технологий на основе свойств механической "стоячей волны".
- 5. Современное состояние проблем и методов акустического воздействия на процессы добычи транспорта нефти.
- 6. Влияние электромагнитного поля на гидродинамику и тепломассооперенос при течении смесей в трубах.
- 7. Моделирование процессов притока флюида к горизонтальной скважине.
- 8. Закономерности гидродинамики и тепломассопереноса при исследовании процессов течения в природе и технике.
- 9. Моделирование процесса фильтрации с учетом нелинейного закона фильтрации в низкопроницаемых коллекторах.
- 10. Применение теории подобия в исследованиях процесса сепарации фаз при газификации сжиженного природного газа.
- 11. Исследование комплексных виброакустических и гидродинамических процессов в прямолинейном и неоднородном трубопроводе в условиях его сильного возбуждения пульсациями течения вязкой жидкости.
- 12. Исследование гидродинамики и тепломассообмена в условиях установившихся режимов течения нефтепродуктов в трубопроводах.
- 13. Моделирование условий гидродинамической устойчивости (неустойчивости) течения вследствие структурной нестабильности газожидкостных смесей в горизонтальных и вертикальных трубопроводах.
- 14. Гидродинамика и теплообмен при течении высоковязких углеводородных сред в трубопроводах с переменной по длине площадью поперечного сечения в условиях пуска/останова энергетического оборудования.
- 15. Исследование механизмов массопереноса, сепарации и фильтрации в дисперсных

- водонефтяных потоках в полях массовых инерционных и электромагнитных сил.
- 16. Комплексное моделирование и исследование реологических свойств многофазной жидкотекущей среды в замкнутых системах.
- 17. Закономерности гидродинамики при управлении течением двухфазных углеводородных сред в трубопроводах.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Кудряшов, Николай Алексеевич. Методы нелинейной математической физики : учебное пособие / Н. А Кудряшов. Долгопрудный: Интеллект, 2010. 364 с.
- 2. Методы математической физики. Специальные функции. Уравнения математической физики [Электронный ресурс] = Methods of Mathematical Physics. Special Functions. Equations of Mathematical Physics. Workbook : рабочая тетрадь / В. Г. Багров [и др.]; Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики и математической физики (ВММФ). 1 компьютерный файл (pdf; 1.3 МВ). Томск: Изд-во ТПУ, 2012. Заглавие с титульного экрана. Электронная версия печатной публикации. Текст на английском языке. Доступ из корпоративной сети ТПУ. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m147.pdf Системные требования: Adobe Reader (дата обращения: 25.05.2020)
- 3. Абакумов, Михаил Владимирович. Лекции по численным методам математической физики: учебное пособие / М. В. Абакумов, А. В. Гулин; Московский государственный университет им. М. В. Ломоносова (МГУ), Факультет вычислительной математики и кибернетики. Москва: Инфра-М, 2014. 158 с.
- 4. Лакс, Питер Дэвид. Гиперболические дифференциальные уравнения в частных производных : пер. с англ. / П. Д. Лакс. Москва; Ижевск: Регулярная и хаотическая динамика Изд-во Ижевского института компьютерных исследований, 2010. 296 с.
- 5. Сергеев, Игорь Николаевич. Дифференциальные уравнения : учебник для вузов / И. Н. Сергеев. Москва: Академия, 2013. 287 с.
- 6. Калиткин, Николай Николаевич. Численные методы : учебное пособие / Н. Н. Калиткин; под ред. А. А. Самарского. 2-е изд., испр.. Санкт-Петербург: БХВ-Петербург, 2014. 586 с.
- 7. Мамонова, Татьяна Егоровна. Использование гидродинамических моделей в задачах определения утечек из нефтепродуктопроводов = Using the hydrodynamic models in problems of leaks definition from oil pipelines [Электронный ресурс] / Т. Е. Мамонова // Нефтяное хозяйство научно-технический производственный журнал: 2015. № 4. [С. 92-95]. Заглавие с экрана. [Библиогр.: 10 назв.]. Доступ по договору с организацией держателем ресурса. Схема доступа: http://earchive.tpu.ru/handle/11683/56363 (контент) (дата обращения: 25.05.2020)
- 8. Подходы к моделированию гидроразрыва пласта и направления их развития = Approaches to modeling hydraulic fracturing and their development [Электронный ресурс] / М. М. Хасанов [и др.] // Нефтяное хозяйство научно-технический и производственный журнал: 2017 . № 12 . [С. 37-41]. ISSN 0028-2448.— Заглавие с экрана. Доступ по договору с организацией-держателем ресурса. Схема доступа: https://doi.org/10.24887/0028-2448-2017-12-37-41 (контент) (дата обращения: 25.05.2020)
- 9. Насибуллин, Э. И. Закономерности гидродинамики при управлении течением однофазных углеводородных сред в трубопроводах [Электронный ресурс] / Э. И. Насибуллин; науч. рук. С. Н. Харламов // Проблемы геологии и освоения недр труды XXIII Международного симпозиума имени академика М. А. Усова студентов и молодых

ученых, посвященного 120-летию со дня рождения академика К. И. Сатпаева, 120-летию со дня рождения профессора К. В. Радугина, Томск, 8-12 апреля 2019 г.: в 2 т.: / Национальный исследовательский Томский политехнический университет, Инженерная школа природных ресурсов; гл. ред. А. С. Боев; под ред. Е. Ю. Пасечник . — 2019. — Т. 2. — [С. 593-595]. — Заглавие с экрана. — [Библиогр.: с. 595 (6 назв.)]. — Свободный доступ из сети Интернет. Схема доступа: http://earchive.tpu.ru/bitstream/11683/56363/1/conference_tpu-2019-C11_V2_p593-595.pdf (контент) (дата обращения: 25.05.2020)

В. Д. Исследования гидродинамики и тепломассообмена в условиях 10. установившихся режимов течения нефтепродуктов в трубопроводах [Электронный ресурс] / В. Д. Ким, М. С. Миколенко; науч. рук. С. Н. Харламов // Проблемы геологии и освоения недр труды XXII Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 155-летию со дня рождения академика В.А. Обручева, 135-летию со дня рождения академика М.А. Усова, основателей Сибирской горно-геологической школы, и 110-летию первого выпуска горных инженеров в Сибири, Томск, 2-7 апреля 2018 г.: в 2 т: / Национальный исследовательский Томский политехнический университет, Инженерная школа природных ресурсов; под ред. А. С. Боева. — 2018. — Т. 2. — [С. 684-685]. — Заглавие с экрана. — [Библиогр.: с. 685 (5 назв.)]. Свободный доступ ИЗ сети Интернет. Схема доступа: http://earchive.tpu.ru/bitstream/11683/51194/1/conference tpu-2018-C11 V2 p684-685.pdf (контент) (дата обращения: 25.05.2020)

Дополнительная литература:

- 1. Будущее прикладной математики. Лекции для молодых исследователей. Поиски и открытия / Российская академия наук (РАН), Институт прикладной математики им. М. В. Келдыша (ИПМ); под ред. Г. Г. Малинецкого. Москва: URSS, 2009. 640 с.:
- 2. Алиев, Али Вейсович. Математическое моделирование в технике / А. В. Алиев, О. В. Мищенкова. Ижевск; Москва: Институт компьютерных исследований, 2012. 476 с.
- 3. Цветков, Федор Федотович. Тепломассообмен: учебник для вузов/ Ф. Ф. Цветков, Б. А. Григорьев: учебник для вузов / Ф. Ф. Цветков, Б. А. Григорьев. Москва: Изд-во МЭИ, 2011. 559 с.
- 4. Радин, Владимир Павлович. Метод конечных элементов в динамических задачах сопротивления материалов: [учебное пособие] / В. П. Радин, Ю. Н. Самогин, В. П. Чирков. Москва: Физматлит, 2013. 313 с.
- 5. Пятницкий, Лев Николаевич. Природа турбулентности и обратная задача / Л. Н. Пятницкий. Москва: ЛЕНАНД, 2014. 187 с.

6.2. Информационное и программное обеспечение

Internet-ресурсы (образовательные и библиотечные ресурсы):

- 1. Полнотекстовые и реферативные базы данных . Режим доступа: https://www.lib.tpu.ru. Доступ из корпоративной сети ТПУ.
- 2. Научная электронная библиотека. Режим доступа: http://elibrary.ru.

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

Zoom Zoom; 7-Zip; Adobe Acrobat Reader DC; Cisco Webex Meetings; Google Chrome; Microsoft Office 2013 Standard Russian Academic; Mozilla Firefox ESR; WinDjView; Document Foundation LibreOffice

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование:

No	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034 Томская область, г. Томск, Ленина проспект, 2, строен. 5, 305	Компьютер - 1 шт., мультимедийное оборудование – 1 шт. Комплект учебной мебели на 90 посадочных мест
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 Томская область, г. Томск, Ленина проспект, 2, строение 5, 113	Лазерный доплеровский измеритель скорости потока - 1 шт.; Стенд лабораторный "Поток" - 1 шт.; Лабораторный стенд "Уравнение Бернулли" - 1 шт.; Доска мобильная (флип-чарт) - 1 шт.; Комплект учебной мебели на 24 посадочных мест; Компьютер - 1 шт., Телевизор – 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 21.04.01 «Нефтегазовое дело», профиль «Надежность и безопасность объектов транспорта и хранения углеводородов» (приема 2020 г., очная форма обучения).

Разработчик:

Должность	Подпись	ФИО
Профессор, д.ф-м.н., профессор	TO !	С.Н. Харламов
ОНД ИШ ПР НИ ТПУ	(do n	

Программа одобрена на заседании Отделения нефтегазового дела (протокол от «26» июня 2020 г. № 25).

И.о. заведующего кафедрой – руководитель выпускающего отделения нефтегазового дела на правах кафедры д.г.-м.н, профессор

/И.А. Мельник/

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании Отделения нефтегазового дела ИШ ПР НИ ТПУ (протокол)
2020/2021 учебный год		От 00.00.0000 г. №