ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2018 г.

ФОРМА ОБУЧЕНИЯ очная

Математика 1 Направление подготовки/ 05.03.06 Экология и природопользование специальность Образовательная программа Геоэкология (направленность (профиль)) Геоэкология Специализация высшее образование – бакалавриат Уровень образования Kypc 1 семестр 1 Трудоемкость в кредитах 6 (зачетных единицах) Заведующий кафедрой – Трифонов А.Ю. руководитель ОМИ на правах кафедры Руководитель ООП Азарова С.В. Тарбокова Т.В. Преподаватель

1. Роль дисциплины «Математика 1» в формировании компетенций выпускника:

Элемент		К од компетенции	Наименование компетенции	Составляющие результатов освоения (дескрипторы компетенций)		
образовательной программы (дисциплина)	Семестр			Код	Наименование	
		УК(У)-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач Владение базовыми знаниями в области фундаментальных разделов математики в объеме, необходимом для владения	УК(У)-1.В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера	
	1			УК(У)-1.У1	Умеет решать задачи теоретического и прикладного характера	
				УК(У)-1.31	Знает законы естественных наук и математические методы теоретического характера	
Математика 1		OHMAN		ОПК(У)-1.В1	Владеет математическим аппаратом алгебры и дифференциального исчисления функции одной переменной для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач	
		ОПК(У)-1	математическим аппаратом экологических наук, обработки	оаботки ОПК(У)-1.У1 Умеет применять изученные методы а знализа для решения стандартных зад		
			информации и анализа данных по экологии и природопользованию	ОПК(У)-1.31	Знает основные понятия и теоремы линейной и векторной алгебры, аналитической геометрии, теории линейных пространств, дифференциального исчисления функции одной переменной	

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Код достижения	Наименование раздела	Методы оценивания
Код	Наименование	контролируемой	дисциплины	(оценочные мероприятия)
		компетенции (или ее		
		части)		
	Владеет основными понятиями и методами линейной		1. Линейная алгебра	
	алгебры, аналитической геометрии и дифференциального		2. Векторная алгебра	Контрольная работа
	исчисления функции одной переменной	УК(У)-1	3. Аналитическая геометрия	Контрольная расота ИДЗ
РД1		УК(У)-1 ОПК(У)-1	4. Введение в анализ	71Д3 Тестирование – независимый
		OIIK(y)-1	5. Дифференциальное	тестирование – независимый контроль ЦОКО
			исчисление функции одной	контроль ЦОКО
			переменной	

РД2	Умеет вычислять определители, выполнять действия с матрицами, исследовать и решать системы линейных алгебраических уравнений; производить действия над векторами; геометрически и аналитически представлять прямую и плоскость; устанавливать взаимное расположения прямых и плоскостей; приводить общие уравнения кривых и поверхностей к каноническому виду и строить их; находить пределы функций и числовых последовательностей; находить производные, исследовать функции одного переменного и строить их графики	УК(У)-1 ОПК(У)-1	Пинейная алгебра Векторная алгебра Аналитическая геометрия Введение в анализ Дифференциальное исчисление функции одной переменной	Контрольная работа ИДЗ Тестирование – независимый контроль ЦОКО
РД3	Знает алгебру матриц; методы решения систем линейных алгебраических уравнений; методы векторной алгебры; свойства и уравнения основных геометрических образов; основные положения теории пределов; правила и методы дифференцирования функции одной переменной, схему полного исследования функции	УК(У)-1 ОПК(У)-1	 Линейная алгебра Векторная алгебра Аналитическая геометрия Введение в анализ Дифференциальное исчисление функции одной переменной 	Контрольная работа ИДЗ Тестирование – независимый контроль ЦОКО

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов). Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности,
		необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий и дифференцированного зачета

Степень еформированности результатов обучения	Балл	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	90 ÷ 100	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% ÷ 89%	70 ÷ 89	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% ÷ 69%	55 ÷ 69	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
55% ÷ 100%	55 ÷ 100	«Зачтено»	Результаты обучения соответствуют минимально достаточным требованиям
0% ÷ 54%	0 ÷ 54	«Неудовл.»/ «Не зачтено»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий		
1.	Контрольная работа	Контрольная работа «Линейная алгебра» ВАРИАНТ №1		
		1. Дан определитель $\begin{vmatrix} 2 & 4 & -3 & 1 \\ -1 & 1 & 0 & 1 \\ 3 & 2 & 4 & 0 \\ 0 & -1 & 1 & 3 \end{vmatrix}$. <i>а</i>) Запишите разложение данного определителя по четвёртому столбцу; б) вычислите определитель, получив предварительно нули в какой – либо строке или столбце.		
		2. Решить систему уравнений методом обратной матрицы: $ \begin{cases} x + 2y - z = -1, \\ 3y - z = 1, \\ x + 4y + z = 5. \end{cases} $ Значение x вычислить также методом Крамера.		
		3. Исследовать систему на совместность и решить методом Гаусса		

Оценочные мероприятия	Примеры типовых контрольных заданий
	$x_2 + x_3 + x_4 = 1$
	$\int x_1 - x_3 - x_4 = 2$
	$x_1 + x_2 \qquad -x_4 = 3$
	$\begin{vmatrix} x_1 & -x_3 - x_4 = 2 \\ x_1 + x_2 & -x_4 = 3 \\ x_1 + x_2 + x_3 & = 4 \end{vmatrix}$
	$\int 2x_1 + x_2 + 3x_3 + 2x_4 = 0,$
	$2x_1 + x_2 + 2x_3 + x_4 = 0,$
	4. Дана система однородных линейных уравнений
	$2x_1 + x_2 + 4x_3 + 3x_4 = 0.$
	а) Докажите, что система имеет нетривиальные решения; б) Найдите общее решение системы; в) найдите фундаментальную систему решений.
	. При каких значениях параметра λ система линейных уравнений
	с расширенной матрицей
	$\begin{pmatrix} 1 & 2\lambda & 1 & 4 \end{pmatrix}$
	Контрольная работа по теме «Векторная алгебра» ВАРИАНТ №1
	I. Даны четыре вектора: $\vec{a} = \{4,5,2\}; \vec{b} = \{3,0,1\}; \vec{c} = \{-1,4,2\}; \vec{d} = \{5,7,8\}.$
	1. Доказать, что векторы $\vec{a}, \vec{b}, \vec{c}$ образуют базис и найти разложение вектора \vec{d} в этом базисе.
	2. Найти косинус угла между векторами \vec{a} и \vec{b} .
	3. Найти длину вектора $\vec{g} = \vec{a} + 2\vec{b} + 3\vec{c}$.
	II. Даны четыре точки: $A(1;3;0), B(4;1;2), C(3;0;1), D(-4;3;5)$.
	4. Найти объём пирамиды $ABCD$ и длину высоты , опущенной из вершины D на грань ABC .
	5. Найти проекцию вектора \overrightarrow{AB} на ось вектора \overrightarrow{CD} .
	6. Найти координаты вектора $[(\overrightarrow{BC} + \overrightarrow{AB}), \overrightarrow{CB}]$.

Оценочные мероприятия	Примеры типовых контрольных заданий
	III. Параллелограмм построен на векторах $\vec{a} = \vec{p} + 4\vec{q}$, $\vec{b} = \frac{1}{2}(\vec{p} - \vec{q})$, где $ \vec{p} = 4$, $ \vec{q} = 2$, $(\vec{p} \wedge \vec{q}) = \frac{\pi}{3}$.
	Определить: а) косинус тупого угла между диагоналями; б) длину высоты, опущенной на сторон
	Контрольная работа по теме «Аналитическая геометрия» ВАРИАНТ №1
	1. Определить при каких значениях а прямая
	$(a+2)x + (a^2-9)y + 3a^2 - 8a + 5 = 0$ параллельна оси ОХ.
	2. Составить уравнения прямых, параллельных прямой $3x - 4y - 10 = 0$ и отстоящих от нее на расстояние $d=3$
	3. Даны вершины треугольника $A(2,6)$, $B(4,-2)$, $C(-2,-6)$.
	Составить уравнение высоты из вершины A и уравнение медианы из вершины C .
	4. Привести к каноническому виду, назвать и построить кривые: a) $16x^2 + 25y^2 + 32x - 100y - 284 = 0$; б) $y^2 - 4y - 20x + 24 = 0$.
	5. Из общих уравнений прямой : $2x + y - 3z - 9 = 0$,
	-2x + 3z + 4 = 0
	получить канонические и параметрическое уравнения прямой.
	6. Найти проекцию точки $A(1,2,0)$ на плоскость $8x + 6y + 8z - 25 = \theta$.
	7. Построить тело, ограниченное поверхностями
	$x^2 = z,$ $x + y = 2,$
	$y \geq 0, z \geq 0.$
	Контрольная работа по теме «Введение в анализ»
	I. Вычислить пределы
	1. $\lim_{n \to \infty} \frac{\sqrt{n^2 - 4n}}{\sqrt[3]{2n^3 + 1}}$; 2. $\lim_{n \to \infty} \frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}}{n - 1}$;
	3. $\lim_{x \to 1} \frac{\sqrt{1+x^2}}{2x}$; 4. $\lim_{x \to \infty} \frac{6x^2 + 2x}{3x^2 + 1}$;

Оценочные мероприятия	Примеры типовых контрольных заданий
	5. $\lim_{x \to 2} \frac{\sqrt{x^2 - 3} - 1}{x - 2}$; 6. $\lim_{x \to 0} \frac{x^2}{1 - \cos x}$;
	7. $\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^{\frac{x^2+1}{x}}$; 8. $\lim_{x \to 0} \frac{\ln(x^2+2) - \ln 2}{x^2}$;
	9. $\lim_{x \to 0} \frac{e^{2x} - e^x}{x}$; 10. $\lim_{x \to 2} \frac{\sin(2 - x)}{\sqrt{2x} - 2}$.
	II. Определить порядок б. м. $\alpha(x)$ при $x \to 0$ относительно x :
	1. $\alpha(x) = \ln(1 + \sqrt[3]{x^2 \cdot \lg x})$, 2. $\alpha(x) = \sqrt{2x + 1} - 1$.
	Ш. Найти точки разрыва функции, указать их характер. Построить график функции в окрестности точек разрыва:
	1. $f(x) = \begin{cases} 0, ecnu \ x < 0, \\ x^2, ecnu \ 0 \le x < 1, \\ x + 2, ecnu \ x \ge 1. \end{cases}$ 2. $y = \frac{\frac{1}{2^{1-x}}}{\frac{1}{1-x}}, 3. y = \frac{1}{x^2 - 4}.$
	Контрольная работа по теме «Дифференциальное исчисление функции одного переменного» ВАРИАНТ №1
	I. Найти производные следующих функций:
	1. $y = (e^{\cos x} + 3x)^2$; 2. $3^x + 3^y = x - 2y$; 3. $y = (\operatorname{tg} 2x)^{\cot (\sqrt{\frac{x}{2}})}$;
	II. Найти вторую производную $\frac{d^2y}{dx^2}$:
	1. $y = \frac{x^2}{x^2 - 1}$, 2. $\begin{cases} x = \cos(t/2), \\ y = t - \sin t. \end{cases}$ 3. $y = \sin(x - y)$

Оценочные мероприятия	Примеры типовых контрольных заданий
	III. Пользуясь правилом Лопиталя найти пределы:
	1. $\lim_{x \to 1} \left(\frac{x^2}{x - 1} - \frac{1}{\ln x} \right)$ 2. $\lim_{x \to 1 - 0} (\sin \pi x)^{\cos \frac{\pi x}{2}}$
	$\frac{1}{2}$
	IV Провести полное исследование функции $y = xe^{-x}$ и построить её график

	Оценочные мероприятия	Примеры типовых контрольных заданий
2.	ИДЗ.	Пример варианта индивидуальных заданий.
		Линейная алгебра
		1. Вычислить определители
		$\begin{bmatrix} 12 & 3 & -1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} -7 & -3 & 2 & 4 \\ 2 & 1 & 1 & 2 \end{bmatrix}$
		a) $\begin{vmatrix} 12 & 3 & -1 & 2 \\ 1 & 1 & 0 & -1 \\ -4 & 2 & 4 & -2 \\ -2 & 0 & 1 & -1 \end{vmatrix}$ b) $\begin{vmatrix} -7 & -3 & 2 & 4 \\ -2 & 0 & 1 & 1 \\ -4 & 2 & 1 & 3 \\ -3 & -2 & 2 & 1 \end{vmatrix}$
		$\begin{vmatrix} -2 & 0 & 1 & -1 \end{vmatrix}$ $\begin{vmatrix} -3 & -2 & 2 & 1 \end{vmatrix}$
		${f 2}$. Найти матрицу ${f X}$ из уравнения. Сделать проверку
		$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$ \times $\begin{pmatrix} 1 & 11 & -15 \\ 2 & 2 & 2 \end{pmatrix}$
		$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 11 & -15 \\ 2 & -8 & 3 \\ 11 & 7 & 0 \end{pmatrix}.$
		3. Решить системы линейных уравнений:
		a) методом Крамера, b) матричным методом
		$\begin{cases} 3x + 4y - 2z = 26 & \begin{cases} x + 5y - z = 5 \\ 2z + 3z + 3z = 7 \end{cases} \end{cases}$
		a) $\begin{cases} 3x + 4y - 2z = 26 \\ x - y + 3z = -2 \\ 3x - 3y + 5z = -2 \end{cases}$ b) $\begin{cases} x + 5y - z = 5 \\ 3x + 8y + z = 7 \\ 4x - 6y + z = 10 \end{cases}$
		4. Решить системы методом Гаусса
		$\begin{cases} x_2 & -3x_3 + 4x_4 = -5 \end{cases}$
		$a) \begin{cases} x_2 & -3x_3 + 4x_4 = -5 \\ x_1 & -2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 & -5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 & = 5 \end{cases}$
		$ \begin{pmatrix} 3x_1 & 12x_2 & 3x_4 & -12 \\ 4x_1 & 13x_2 & -5x_3 & = 5 \end{pmatrix} $
		$\begin{cases} x_1 + 3x_2 + 5x_3 - 4x_4 & = 1 \end{cases}$
		$b) \begin{cases} x_1 + 3x_2 + 5x_3 - 4x_4 & = 1 \\ x_1 + 3x_2 + 2x_3 - 2x_4 + x_5 & = -1 \\ x_1 - 2x_2 + x_3 - x_4 - x_5 & = 3 \\ x_1 - 4x_2 + x_3 + x_4 + x_5 & = 3 \\ x_1 + 2x_2 + x_3 - x_4 + x_5 & = -1 \end{cases}$
		$ \begin{cases} x_1 - 2x_2 + x_3 - x_4 - x_5 = 3 \\ x_1 - 4x_2 + x_3 + x_4 + x_5 = 3 \end{cases} $
		$\begin{bmatrix} x_1 & +2x_2 & +x_3 & -x_4 & +x_5 & = & -1 \end{bmatrix}$
		$\begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \end{cases}$
		$ c) \begin{cases} x_1 & +x_2 & -x_3 & +x_4 & = 0 \\ x_1 & -x_2 & +x_3 & -x_4 & = 0 \\ 3x_1 & +x_2 & -x_3 & +x_4 & = 0 \end{cases} $
		$\begin{bmatrix} 3x_1 & -x_2 & +x_3 & -x_4 & = 0 \end{bmatrix}$
		5. Найти собственные значения и собственные векторы матриц.
		$\begin{pmatrix} 4 & -5 \end{pmatrix} \qquad \begin{pmatrix} 4 & -3 & -3 \end{pmatrix}$
		a) $A = \begin{pmatrix} 4 & -5 \\ -2 & 7 \end{pmatrix}$ b) $B = \begin{pmatrix} 4 & -3 & -3 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$
		Аналитическая геометрия на плоскости
		1. Составить уравнения прямых, проходящих через точку $M(-7;5)$:
		а) параллельно прямой $3x + 2y - 1 = 0$,
		b) перпендикулярно прямой $\frac{x-1}{-3} = \frac{y+4}{2}$,
		c) под углом 45^0 к прямой $\begin{cases} -3 & t+4^2 \\ x = 3t+4^2 \\ y = -t-2 \end{cases}$
		2. Даны вершины треугольника $A(-1;3)$, $B(2;5)$, $C(0;6)$. Составить: a) уравнение стороны AC.
		Составить: а) удавнение стороны АС.

Оценочные мероприятия	Примеры типовых контрольных заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
3.	Тестирование –	Вопросы:
	независимый контроль	1. С помощью элементарных преобразований расширенная матрица системы линейных уравнений
	ЦОКО (РТ1 и РТ2)	(1 -1 2 0 1 0)
		приведена к виду $\begin{vmatrix} 0 & 0 & 0 & 0 & 1 \end{vmatrix}$ Выберите верные утверждения, если A – основная
		приведена к виду о о о о т Выосрите верные утверждения, сели и основная
		$\begin{bmatrix} 0 & 1 & 0 & 2 & 0 & & 0 \end{bmatrix}$
		матрица системы, A — расширенная матрица системы.
		$1. \ rang(A) = 2$
		2. rang(A) = 3
		3. $rang(A) = 2$
		4. rang(A) = 3
		5. система совместна
		6. система несовместна
		2. Высота треугольника ABC , опущенная из вершины C , если $A(3;1;2)$, $B(5;-3;6)$, $C(3;0;4)$ равна
		3 . Расстояние между фокусами эллипса $5x^2 + 9y^2 - 30x + 18y + 9 = 0$ равно
		4 . Косинус острого угла между прямыми $\frac{x+4}{10} = \frac{y-1}{-2} = \frac{z+5}{-11}$ и $\begin{cases} x = 9t+1, \\ y = 6t, \\ z = 3-2t \end{cases}$ равен
		5. Установите соответствие между функцией и её дифференциалом
		функция производная
		$y = \sqrt[3]{\sin x}$ $dy = \frac{\cos x}{3\sqrt[3]{\sin^2 x}} dx$
		$y = \sqrt{\sin x}$ $dy = \frac{\cos x}{2\sqrt{\sin x}} dx$

Оценочные мероприятия	Примеры типовых контрольных заданий
	$y = \frac{1}{\sqrt{\sin x}}$ $dy = -\frac{\cos x}{2\sqrt{\sin^3 x}} dx$
	$y = \frac{1}{\sqrt[3]{\sin x}} \qquad \qquad dy = -\frac{\cos x}{3\sqrt[3]{\sin^4 x}} dx$
	$dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$
	$dy = \frac{1}{2\sqrt{\sin x}} dx$
	6. Определите порядок малости бесконечно малой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$ относительно $\frac{1}{x}$ при $x \to \infty$
	$K = \underline{\hspace{1cm}}$. 7. Функция $y = 6x \cdot e^{-2x}$ убывает для значений X
	$1 \cdot x \in (-\infty; 1/2)$
	2. $x \in (1/2; +\infty)$ 3. $x \in (-\infty; -1/2) \cup (1/2; +\infty)$ 4. $x \in (-1/2; +\infty)$ 5. $x \in (1/2; 0)$
4. Дифференцированный зачет	 Что такое определитель? При каких преобразованиях величина определителя не меняется В каких случаях определитель равен нулю? Что следует из равенства определителя нулю? Дайте определение минора и алгебраического дополнения элемента определителя. Сформулируйте правило вычисления определителя. Как осуществляются линейные операции над матрицами?
	• Как перемножаются две матрицы? Свойства произведения матриц.

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Какова схема нахождения обратной матрицы?
	• Дайте определения решения системы линейных алгебраических уравнений. Расшифруйте
	понятия «совместная», «несовместная», «определённая», «неопределённая» системы.
	• Напишите формулы Крамера. В каком случае они применимы?
	• Что называется рангом матрицы? Как он находится?
	• Сформулируйте теорему Кронекера – Капелли.
	• При каких условиях система линейных алгебраических уравнений имеет множество решений?
	Когда она имеет единственное решение?
	• Опишите метод Гаусса решения систем линейных уравнений.
	• Какие неизвестные называются свободными, а какие базисными?
	• Какие особенности решения однородных систем линейных алгебраических уравнений Вы знаете?
	• Как строится фундаментальная система решений?
	• Как выполняются линейные операции над векторами? Каковы свойства этих операций?
	• Какие вектора называются линейно зависимыми, а какие линейно независимыми?
	• Что такое базис? Какие вектора образуют базис на плоскости и в пространстве?
	• Какой базис называют декартовым?
	• Что такое координаты вектора?
	• Что называется скалярным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?
	• Что называется векторным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?
	• Что называется смешанным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?
	 Запишите в векторной и координатной формах условия коллинеарности, ортогональности и компланарности векторов.
	• Прямая линия на плоскости, её общее уравнение
	• Дайте понятие нормального и направляющего векторов прямой на плоскости, углового
	коэффициента.
	• Запишите различные виды прямой и укажите геометрический смысл параметров уравнения.
	• Запишите условия параллельности и перпендикулярности прямых на плоскости в случае
	различных видов уравнений прямых.
	• Как найти точку пересечения прямых на плоскости?
	• Как вычисляется расстояние от точки до прямой на плоскости?
	• Дайте определение эллипса и запишите его каноническое уравнение.
	• Дайте определение гиперболы и запишите её каноническое уравнение

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Дайте определение параболы и запишите её каноническое уравнение
	• Изложите схему приведения общего уравнения кривой второго порядка к каноническому виду.
	• Дайте понятие полярной системы координат.
	• Опишите параметрический способ построения линий на плоскости
	• Плоскость, её общее уравнение
	 Как определяется взаимное расположение плоскостей? Запишите условия параллельности и перпендикулярности плоскостей.
	• Как вычисляется расстояние от точки до плоскости?
	 Запишите различные виды уравнений прямой в пространстве и поясните смысл параметров, входящих в уравнения.
	• Изложите схему приведения общих уравнений прямой к каноническому виду.
	• Как определить взаимное расположение прямых в пространстве?
	• Как вычисляется расстояние от точки до прямой в пространстве?
	• Как определить взаимное расположение прямой и плоскости?
	• Как ищется точка пересечения прямой и плоскости?
	• Назовите поверхности второго порядка и напишите их канонические уравнения.
	• Сформулируйте понятие предела числовой последовательности
	• Сформулируйте понятие предела функции одной переменной
	• Что такое односторонние пределы функции в точке?
	• Сформулируйте понятия бесконечно малой и бесконечно большой при $x \to a$ функции.
	• Первый и второй замечательные пределы
	• Как сравниваются бесконечно малые величины? Что такое относительный порядок малости?
	 Какие бесконечно малые называются эквивалентными? Приведите примеры эквивалентных бесконечно малых.
	• Какими свойствами обладают функции, непрерывные на замкнутом промежутке?
	• Что понимают под точкой разрыва функции? Какие разрывы различают?
	• Как связаны понятия непрерывности и дифференцируемости функции в точке?
	• Запишите правила дифференцирования обратной и сложной функций.
	• Запишите правила дифференцирования неявно заданной функции и функции, заданной
	параметрически.
	• Что такое дифференциал функции? Каков его геометрический смысл?
	• Какими свойствами обладают дифференцируемые функции?
	• Как находятся дифференциалы и производные высших порядков?
	• Формула Тейлора

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Что такое точка экстремума функции? Какие точки экстремума бывают?
	• Необходимое условие существования экстремума для дифференцируемой функции
	• Достаточные условия существования экстремума
	• Схема исследования на экстремум функции одного переменного
	• Схема нахождения наибольшего и наименьшего значения функции на замкнутом промежутке.
	• Дайте определение выпуклости и вогнутости кривой на промежутке.
	• Какие точки называются точками перегиба?
	• Что называется асимптотой графика функции? Какие асимптоты различают?
	• В чем состоит правило Лопиталя? Для раскрытия каких неопределённостей оно применяется?

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	В семестре студенты выполняют 5 контрольных работ, содержание которых охватывает все разделы дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с рейтинг-планом дисциплины.
		Критерии оценки задания:
		Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в
		соответствие с рейтинг- планом, на долю верно выполненных заданий.
2.	идз	В семестре студенты выполняют 7 ИДЗ по всем разделам программы дисциплины. У каждого студента в группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе группы. ИДЗ размещены в электронном курсе по дисциплине. Решение каждого задания должно быть подробным, с включением промежуточных расчётов, рассуждений, пояснений, с указанием использованных методов и формул. Задание высылается отдельным файлом, указывается ФИО, группа.
		Критерии оценивания
		Задание считается зачтенным, если выполнено более половины заданий

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		Если задание не зачтено, работа возвращается студенту на доработку.
		Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку. Преподаватель может учесть исправления и добавить баллы к предыдущим
3.	Тестирование – независимый контроль ЦОКО	В семестре студенты проходят два рубежных тестирования (РТ1 и РТ2) во время конференц-недели в середине и конце текущего семестра согласно расписанию. Рубежное тестирование (РТ) проводится в компьютерной форме в on-line режиме. Продолжительность тестирования — 90 минут без перерыва. Отсчёт времени начинается с момента входа студента в Тест. Инструктаж, предшествующий тестированию, не входит в указанное время. Студент может закончить выполнение Теста до истечения отведённого времени. РТ нацелено на независимую объективную оценку знаний, умений и владений, полученных студентами за определенный промежуток обучения. Каждый вариант билета моделируется компьютером по заданным разделам химии и содержит 20 заданий. Студенты вносят ответы в компьютер, но все решения и пояснения проводят на бумаге. По окончании тестирования преподавателю выдается матрица ответов и суммарный рейтинг за тест. Обсуждение результатов тестирования проводится на консультации.
		Критерии оценки одного задания:
		 за каждое правильно выполненное задание выставляется 1 тестовый балл; за неправильно выполненное или невыполненное задание выставляется 0 баллов; для заданий с выбором нескольких правильных ответов, заданий на соответствие и установление последовательности предусмотрено частичное оценивание. Максимальный суммарный тестовый балл за каждое РТ составляет 15 баллов. За 2 недели до РТ студенты могут ознакомится с демонстрационным вариантом билета, который располагается на сайте http://exam.tpu.ru в разделе «Мероприятия», и может быть выполнен каждым студентом неограниченное число раз. Для студентов, не прошедших РТ в период проведения тестирования по уважительной причине, предусмотрена возможность тестирования в резервный день, который назначается сразу после конференцнедели. При результате рубежного тестирования 6 баллов и менее, обучающимся предоставляется в период текущей промежуточной аттестации возможность повторно пройти РТ в резервный день, согласованный с Бюро расписаний ТПУ.
4.	Дифференцированный зачет.	Дифференцированный зачет осуществляется в соответствии с Положением о проведении текущего контроля и промежуточной аттестации ТПУ. Итоговый балл определяется суммированием баллов за все оценочные мероприятия текущего семестра.
		пороприятия токущого осностра.