МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2019 г. ФОРМА ОБУЧЕНИЯ очная

Математические методы в инженерии Направление подготовки/ 15.04.01 Машиностроение специальность Образовательная программа Автоматизация технологических процессов и (направленность (профиль)) производства в машиностроении Специализация Автоматизация технологических процессов и производства в машиностроении Уровень образования высшее образование - магистратура 2 Курс 3 семестр Трудоемкость в кредитах 3 (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 16 Практические занятия Контактная (аудиторная) 16 работа, ч Лабораторные занятия 16 ВСЕГО 48 Самостоятельная работа, ч 60 ч, ОПОТИ 108

Заведующий кафедрой - руководитель Отделения	1thm I	Клименов В.А.
Руководитель ООП	a lilling	Мартюшев Н.В.
Преподаватель	Copaus	Сорокова С.Н.

Зачет

Вид промежуточной

аттестации

Обеспечивающее

подразделение

OM

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименование	Составляющие результатов освоения (дескрипторы компетенций)		
компетенции	компетенции	Код	Наименование	
	Способен	ОПК(У)-1.В1	Владеет опытом применения методов решения научных и технических проблем в машиностроении	
ОПК(У)-1	формулировать цели и задачи исследования, выявлять приоритеты решения задач,	ОПК(У)-1.У1	Умеет применять методы решения научных и технических проблем в машиностроении	
		ОПК(У)-1.У2	Умеет решать проблемы проектирования и изготовления машиностроительных изделий	
	выбирать и создавать критерии оценки	ОПК(У)-1.31	Знает методы решения научных и технических проблем в машиностроении	
	Способен применять современные методы	ОПК(У)-2.У1	Умеет применять физико-математические методы при моделировании задач в области машиностроительных производств и их конструкторско-технологического обеспечения	
ОПК(У)-2	исследования, оценивать и	ОПК(У)-2.У2	Умеет использовать пакеты прикладных программ и компьютерной графики, при решении инженерных и исследовательских задач	
	представлять результаты выполненной работы	ОПК(У)-2.31	Знает современные физико-математические методы, применяемые в инженерной и исследовательской практике	
	выполненной расоты	ОПК(У)-2.32	Знает пакеты прикладных программ и компьютерной графике	
ОПК(У)-14	Способен выбирать аналитические и численные методы при разработке математических моделей машин, приводов, оборудования, систем, технологических процессов в машиностроении	ОПК(У)-14.В1	Владеет навыками выбора аналитических и численных методов при разработке математических моделей машин, приводов, оборудования, систем, технологических процессов в машиностроении	
		ОПК(У)-14.У1	Умеет выбирать аналитические и численные методы при разработке математических моделей машин, приводов, оборудования, систем, технологических процессов в машиностроении	
		ОПК(У)-14.31	Знает аналитические и численные методы, используемые при разработке математических моделей машин, приводов, оборудования, систем, технологических процессов в машиностроении	
	Способен разрабатывать физические и		Владеет опытом разработки физических и математических моделей исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере	
	математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов	ПК(У)-9.У1	Умеет разрабатывать методики и организовывать проведение экспериментов с анализом их результатов	
ПК(У)-9		ПК(У)-9.31	Знает принципы разработки физических и математических моделей исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части, модулю общепрофессиональных дисциплин (M1.BM1.4) учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Troute jenemiere cebecinis Aredinishing of Ajr equemis pestinguis ce				
Планируемые результаты обучения по дисциплине				
Код	Код Наименование			
РД1	Умение анализировать полученную информацию; применять полученные фундаментальные знания в качестве основы профессиональной деятельности	ОПК(У)-2		
РД2	Применять глубокие знания в области современных технологий	ОПК(У)-1,		

	машиностроительного производства для решения междисциплинарных			
	инженерных задач с использованием системного анализа и			
	моделирования объектов и процессов машиностроения			
РД3	Решать инновационные задачи инженерного анализа, связанные с	ПК(У)-9		
	созданием и обработкой материалов и изделий, с использованием			
	системного анализа и моделирования объектов и процессов			
	машиностроения			

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.	РД-1	Лекции	4
Случайные события, случайные		Практические занятия	6
величины и их математические		Лабораторные занятия	2
модели		Самостоятельная работа	16
Раздел (модуль) 2	РД-2	Лекции	2
Погрешности измерений		Практические занятия	2
		Лабораторные занятия	2
		Самостоятельная работа	6
Раздел (модуль) 3	РД-2	Лекции	2
Проверка статистических	РД-3	Практические занятия	2
гипотез		Лабораторные занятия	2
		Самостоятельная работа	6
Раздел (модуль) 4	РД-2,	Лекции	2
Статистические методы	РД-3	Практические занятия	2
построения эмпирических		Лабораторные занятия	4
формул		Самостоятельная работа	14
Раздел (модуль) 5	РД-2	Лекции	6
Математические методы	РД-3	Практические занятия	4
анализа и интерпретация		Лабораторные занятия	6
результатов		Самостоятельная работа	18
экспериментальных			
исследований			

Содержание разделов дисциплины:

Раздел 1. Случайные события, случайные величины и их математические модели

Случайные явления и их математические модели. Пространство элементарных событий. Многомерные случайные величины. Плотность совместного распределения случайных величин. Ковариационная матрица. Выборочный метод. Общие понятия о генеральной совокупности и выборке. Эмпирическая функция распределения. Числовые характеристики выборки: эмпирическое среднее, дисперсия, размах выборки, коэффициент вариации, стандартное отклонение, мода, медиана, моменты, асимметрия, эксцесс

Темы лекций:

- 1. Случайные события, случайные величины и их математические модели
- 2. Использование различных математических пакетов для описания инженерных задач,

опыт применения, простейшие примеры.

Темы практических занятий:

- 1. Основные понятия и теоремы теории вероятностей (приложения к решению инженерных задач).
- 2. Приложение теории вероятностей к решению простейших задач теории надежности.
- 3. Основные вероятностные распределения (доклады по рефератам).

Названия лабораторных работ

1. Анализ эмпирических распределений. Числовые характеристики выборки.

Раздел 2. Погрешности измерений

Классификация ошибок измерения: грубые, систематические, случайные ошибки. Закон распределения случайных ошибок измерения: вероятностная модель, нормальный закон распределения, функция Лапласа, правило «трех сигм». Закон больших чисел, неравенство и теорема Чебышева, теорема Ляпунова. Понятие о точечных и интервальных оценках параметров распределения случайной величины. Свойства точечных оценок: состоятельность, несмещенность, эффективность. Точечная и интервальная оценка истинного значения измеряемой величины. Точечная и интервальная оценка погрешности измерений. Использование неравенства Чебышева при построении доверительных интервалов

Темы лекций:

1. Погрешности измерений.

Темы практических занятий:

1. Обработка результатов прямых многократных измерений

Названия лабораторных работ:

1. Точечные и интервальные (доверительные) оценки параметров нормально распределенной случайной величины.

Раздел 3. Проверка статистических гипотез

Основные понятия и определения. Алгоритм проверки статистических гипотез Критерии согласия Колмогорова, омега-квадрат, «хи-квадрат». Приближенная проверка гипотезы о нормальности распределения с помощью выборочных коэффициентов асимметрии и эксцесса. Проверка однородности наблюдений, исключение грубых ошибок измерений. Сравнение средних, критерий Стьюдента. Сравнение дисперсий, критерии Фишера, Бартлета

Темы лекций:

1. Проверка статистических гипотез

Темы практических занятий:

1. Основные параметрические гипотезы о равенстве дисперсий и математических ожиданий.

Названия лабораторных работ:

1. Предварительная статистическая обработка экспериментальных данных. Проверка статистических гипотез.

Раздел 4. Статистические методы построения эмпирических формул

Понятие о прямых и косвенных измерениях. Задача подбора эмпирической формулы.

Метод наименьших квадратов. Нормальная система уравнений. Полиномиальная аппроксимация эмпирических данных методом наименьших квадратов: линейная и квадратичная зависимости, общий случай многочлена произвольной степени. Простейшие нелинейные зависимости, спрямляющая замена переменных. Общий случай моделей нелинейных по параметрам, понятие о нелинейном методе наименьших квадратов. Обобщенные полиномы, ортогональные системы функций, полиномы Чебышева, тригонометрические полиномы. Выбор оптимальной формы связи между измеряемыми физическими величинами.

Темы лекций:

1. Статистические методы построения эмпирических формул

Темы практических занятий:

1. Линейный и нелинейный метод наименьших квадратов

Названия лабораторных работ:

- 1. Линейная регрессия.
- 2. Нелинейная регрессия. Выбор оптимальной степени аппроксимирующего многочлена.

Раздел 5. Математические методы анализа и интерпретация результатов экспериментальных исследований

Сглаживание эмпирических данных и численное дифференцирование. Линейное сглаживание по трем и пяти точкам. Нелинейное сглаживание по семи точкам. Простейшие формулы численного дифференцирования. Оценка погрешности и повышение точности численного дифференцирования по правилу Рунге. Выбор оптимального шага численного дифференцирования. Постановка задачи приближения функций. Интерполяционные полиномы Лагранжа и Ньютона. Интерполяция сплайнами. Простейшие квадратурные формулы: прямоугольников, трапеций, Симпсона, Буля. Практическая оценка погрешностей квадратурных формул и уточнение результатов численного интегрирования по правилу Рунге

Темы лекший:

- 1. Математические методы анализа и интерпретация результатов экспериментальных исследований
- 2. Интерполяционные полиномы Лагранжа и Ньютона. Интерполяция сплайнами.
- 3. Численное интегрирование и дифференцирование. Использование библиотек MathCad и MatLab

Темы практических занятий:

- 1. Математические методы построения интерполяционных зависимостей.
- 2. Сглаживание экспериментальных данных, численное дифференцирование и интегрирование

Названия лабораторных работ:

- 1. Интерполяция экспериментальных данных и численное интегрирование.
- 2. Сглаживание экспериментальных данных и численное дифференцирование. Ч1.
- 3. Сглаживание экспериментальных данных и численное дифференцирование. Ч2.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение

- индивидуальных заданий и контролирующих мероприятий и др.);
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Перевод текстов с иностранных языков;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Выполнение курсовой работы или проекта, работа над междисциплинарным проектом;
- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

- 1. Иванов, Д. Ю. Введение в математическую обработку результатов эксперимента: учебное пособие/ Д. Ю. Иванов, Т. Н. Князева, Ю. Н. Лазарева; под редакцией Д. Л. Фёдорова. Санкт-Петербург: БГТУ "Военмех" им. Д.Ф. Устинова, 2018. 43 с. URL: https://e.lanbook.com/book/122060 (дата обращения: 20.05.2019)- Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 2. Иванов, Б. Н. Теория вероятностей и математическая статистика : учебное пособие / Б. Н. Иванов. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2019. 224 с. —URL: https://e.lanbook.com/book/ (дата обращения: 20.05.2019)- Режим доступа: из корпоративной сети ТПУ. Текст: электронный.
- 3. Олегин, И. П. Введение в численные методы: учебное пособие / И. П. Олегин, Д. А. Красноруцкий. Новосибирск : НГТУ, 2018. 115 с. URL: https://e.lanbook.com/book/118322 (дата обращения: 20.05.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 4. Поддаева, О. И. Методы экспериментального и численного моделирования : учебно-методическое пособие / О. И. Поддаева, А. Н. Федосова, П. С. Чурин. Москва : МИСИ МГСУ, 2019. 68 с. URL: https://e.lanbook.com/book/143108 (дата обращения: 20.05.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный.

Дополнительная литература:

- 1. Чернусь, П. П. Численные методы и их применение в Matlab : учебное пособие / П. П. Чернусь, П. П. Чернусь. Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2018. 90 с. —URL: https://e.lanbook.com/book/122101 (дата обращения: 20.05.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 2. Амосов, А. А. Вычислительные методы: учебное пособие / А. А. Амосов, Ю. А. Дубинский, Н. В. Копченова. 4-е изд., стер. Санкт-Петербург: Лань, 2014. 672 с. URL: https://e.lanbook.com/book/42190 (дата обращения: 20.05.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 3. Квасов, Б. И. Численные методы анализа и линейной алгебры. Использование Matlab и Scilab : учебное пособие / Б. И. Квасов. Санкт-Петербург : Лань, 2016. 328 с. URL: https://e.lanbook.com/book/- (дата обращения: 20.05.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный

4. Кудрявцев, Е. М. Справочник по Mathcad 11: справочник / Е. М. Кудрявцев. - Москва: ДМК Пресс, 2009. - 181 с. - URL: https://e.lanbook.com/book/1173 (дата обращения: 20.05.2019) - Режим доступа: из корпоративной сети ТПУ. - Текст: электронный.

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. http://www.exponenta.ru/
- 2. http://www.statsoft.ru/home/textbook/default.htm
- 3. http://eqworld.ipmnet.ru/indexr.htm
- 4. https://www.youtube.com/user/MATLABinRussia
- 5. Справочные материалы на сайте преподавателя https://portal.tpu.ru/SHARED/s/S SOROKOVA/teaching/Tab1

Информационно-справочные системы:

- 1. Информационно-справочная система КОДЕКС https://kodeks.ru/
- 2. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/

Профессиональные Базы данных:

1. Научная электронная библиотека eLIBRARY.RU – https://elibrary.ru

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного** программного обеспечения **ТПУ**):

- 1. Mathcad Prime 6.0 Academic Floating
- 2. MATLAB Full Suite R2020a TAH Concurrent
- 3. Google Chrome;
- 4. Mozilla Firefox ESR.
- 5. Microsoft Office 2007 Standard Russian Academic; Microsoft Office 2013 Standard Russian Academic;
- 6. Document Foundation LibreOffice;
- 7. Zoom Zoom.

7. Особые требования к материально-техническому обеспечению дисциплины

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, Тимакова, д.12, учебный корпус №16а, аудитория 210/6	 Компьютер - 10 шт. Комплект учебной мебели на 10 посадочных мест; Шкаф для одежды - 1 шт.;
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (научная лаборатория) 634034 г. Томская область, Томск,	 Комплект учебной мебели на 60 посадочных мест; Компьютер - 2 шт.; Проектор - 1 шт.; Телевизор - 2 шт.

Тимакова, д.12, учебный корпус №16а, 304-поточная лекционная
аудитория

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 15.04.01 Машиностроение / Автоматизация технологических процессов и производства в машиностроении (приема 2019 г., очная форма обучения).

Разработчик(и):

Должность	Подпись //	ФИО	
Доцент ОМ	Coproud	Сорокова С.Н.	
	/ /		

Программа одобрена на заседании выпускающего Отделения материаловедения Инженерной школы новых производственных технологий (протокол №19/1 от 01.07.2019).

подпись

Заведующий кафедрой — руководитель Отделения, д.т.н, профессор

/Клименов В.А./

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании Отделения Материаловедения (протокол)
2019/2020	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание разделов дисциплины 4. Обновлен список литературы, в том числе ссылок ЭБС	протокол №19/1 от 01.07.2019