МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ИШНПТ А.Н. Яковлев

/»/ *OG* 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

Специальные методы упрочнения деталей 15.03.01 Машиностроение Направление подготовки/ специальность Образовательная программа Машиностроение (направленность (профиль)) Специализация Оборудование и высокоэффективные технологии в автоматизированном машиностроительном производстве высшее образование - бакалавриат Уровень образования Курс 4 семестр 7 3 Трудоемкость в кредитах (зачетных единицах) Временной ресурс Виды учебной деятельности Лекции 16 24 Контактная (аудиторная) Практические занятия работа, ч Лабораторные занятия ВСЕГО 40 Самостоятельная работа, ч 68 ИТОГО, ч 108

Вид промежуточной	Зачет	Обеспечивающее	ом ишнпт
аттестации		подразделение	
Заведующий кафедрой -		h . /	В.А. Клименов
руководитель отделения на		11th and	
правах кафедры		1801000	
Руководитель ООП	_	Soulle	Е.А. Ефременков
-	-	egear !	CONT.
Преподаватели	Ü		Ж.Г Ковалевская
1		(M)	

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код компе	Наименование	Составляющие результатов освоения (дескрипторы компетенций)	
тенци и	компетенции	Код	Наименование
ПК(У)-1	способен обеспечивать технологичность изделий и процессов их	ПК(У)- 1.39	Знает современные методы объемного и поверхностного упрочнения стальных деталей и автоматического управления этими процессами
	изготовления; умеет контролировать соблюдение технологической	ПК(У)- 1.У9	Умеет самостоятельно решать технологические задачи модернизации существующих технологий термической обработки деталей машиностроительного производства, в том числе в автоматическом режиме
	дисциплины при изготовлении изделий	ПК(У)- 1.В9	Владеет опытом работы на научно-исследовательском оборудовании по определению структуры и свойств сталей
		ПК(У)-	Знает пути достижения свойств робастности исполнительных систем управления техническими объектами на основе применения математических моделей в форме функций с вещественным аргументом
		ПК(У)- 1.У10 ПК(У)- 1.В10	Умеет составлять и решать уравнения синтеза регуляторов систем автоматического управления Владеет опытом получения моделей систем управления и их элементов

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части Вариативный междисциплинарный профессиональный модуль Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Компетенция		
Код	Наименование		
РД1	Применять знания о современных методах объемного и	ПК(У)-1	
	поверхностного упрочнения в технологическом процессе		
	производства стальных деталей.		
РД2	Выполнять работы на научно-исследовательском оборудовании по ПК(У)-1		
	определению структуры и свойств сталей.		
РД3	Самостоятельно решать технологические задачи модернизации ПК(У)-1		
	существующих технологий объемного и поверхностного		
	упрочнения деталей машиностроительного производства.		

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Основные виды учесной деятельности			
Разделы дисциплины	Формируемый	Виды учебной	Объем
	результат	деятельности	времени,
	обучения по		ч.
	дисциплине		
Раздел 1.	РД1, РД2	Лекции	2

Механизмы упрочнения		Практические занятия	6
сплавов и способы их		Лабораторные занятия	-
реализации		Самостоятельная работа	14
Раздел2.	РД1, РД3	Лекции	4
Объемное и поверхностное		Практические занятия	6
упрочнение пластической		Лабораторные занятия	-
деформацией		Самостоятельная работа	14
Раздел 3.	РД1, РД3	Лекции	6
Упрочнение с помощью		Практические занятия	4
термической и химико-		Лабораторные занятия	-
термической обработки		Самостоятельная работа	14
Раздел 4.	РД1, РД3	Лекции	6
Упрочняющие технологии,		Практические занятия	6
использующие		Лабораторные занятия	-
концентрированные потоки		Самостоятельная работа	26
энергии		_	

Содержание разделов дисциплины:

Раздел 1. Механизмы упрочнения сплавов и способы их реализации

Система воздействия на строение и свойства конструкционный материалов – связь между химическим и фазовым составом сплава, его структурой и свойствами. Инструменты внешнего воздействия на материал. Механизмы упрочнения и способы их реализации. Классификация объемных и поверхностных методов упрочнения.

Тема лекции:

1. Механизмы упрочнения сплавов и способы их реализации (2 ч.).

Тема практического занятия:

1. Современное производство режущего инструмента (4 ч.)

Название лабораторной работы:

1. Строение и свойства специальных легированных сталей (4 ч.)

Раздел 2. Объемное и поверхностное упрочнение пластической деформацией

Поверхностная пластическая деформация (ППД). Состояние поверхности после резания. Поверхности деталей, подвергаемых местному упрочнению. Упрочняющая и отделочно-упрочняющая обработка. Классификация методов ППД, основные схемы, некоторые методы. Поверхностная ультразвуковая обработка — принцип устройства, оборудование, обрабатываемые материалы, примеры использования в производстве.

Интенсивная пластическая деформация (ИПД). Особенность протекания процесса деформации в стесненных условиях. Основные схемы проведения ИПД. Особенности получаемой структуры и свойств. Области применения ИПД.

Темы лекций:

- 1. Поверхностная пластическая деформация (2 ч.).
- 2. Интенсивная пластическая деформация (2 ч.).

Тема практического занятия:

1. Современные методы ППД (4 ч.).

Название лабораторной работы:

Раздел 3. Упрочнение с помощью термической и химико-термической обработки

Принципы проведения термической обработки. Термообрабатываемые стали: классификация, особенности строения. Источники нагрева при термообработке. Среды охлаждения. Поверхностная и объемная закалка. Отпуск закаленных сталей. Примеры использования в современном производстве.

Диффузионные процессы на поверхности стали. Классификация методов химикотермической обработки (XTO). Самые распространенные методы XTO. Новейшие методы XTO.

Темы лекций:

- 1. Современные методы термической обработки сталей (2 ч.).
- 2. Химико-термическая обработка (2 ч.).

Темы практических занятий:

1. Термическая и химико-термическая обработка деталей на современном производстве (4 ч.).

Название лабораторной работы:

1. Структура упрочненных поверхностных слоев (4 ч.).

Раздел 4. Упрочняющие технологии, использующие концентрированные потоки энергии

Источники концентрированной энергии — соотношение эффективной площади воздействия и удельной мощности различных источников энергии. Поверхностная модификация концентрированными потоками энергии. Лазерная обработка. Ионная имплантация. Примеры применения на производстве.

Нанесение газотермических покрытий и наплавка. Строение толстых покрытий. Классификация методов нанесения покрытий. Высокоскоростное газопламенное напыление, детонационное напыление и другие методы. Назначение в современном производстве.

Аддитивные технологии. Особенности селективного лазерного и электронно-лучевого метода. Основные схемы процесса. Наращиваемые материалы и сферы использования полученных изделий.

Темы лекций:

- 1. Поверхностная модификация концентрированными потоками энергии (2 ч.).
- 2. Газотермическое напыление (2 ч.).
- 2. Аддитивные технологии (2 ч.).

Темы практических занятий:

1. Применение напыления и наплавки в современном производстве (4 ч.).

Название лабораторной работы:

1. Особенности строения напыленных и наплавленных слоев (4 ч.).

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;

- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий в виде реферата;
- Подготовка к лабораторным работам;
- Подготовка к оценивающим мероприятиям (зачет).

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

1. Материаловедение: учебник в электронном формате [Электронный ресурс] / В. Б. Арзамасов, А. А. Черепахин. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). Москва: Академия, 2013. 1 Мультимедиа CD-ROM. Высшее профессиональное образование. Бакалавриат. Машиностроение. Библиогр.: с. 170. Доступ из корпоративной сети ТПУ. Системные требования: Pentium 100 MHz, 16 Mb RAM, Windows 95/98/NT/2000, CDROM, SVGA, звуковая карта, Internet Explorer 5.0 и выше.. ISBN 978-5-7695-8835-8.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-05.pdf (контент)

- 2. Современные технологии поверхностного упрочнения и нанесения покрытий: учебное пособие [Электронный ресурс] / Б. С. Зенин, А. И. Слосман; Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра материаловедения в машиностроении (ММС). 2-е изд.. 1 компьютерный файл (pdf; 3.2 МВ). Томск: Изд-во ТПУ, 2012. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m113.pdf (контент)
- 3. Наноструктурные материалы в машиностроении: учебное пособие [Электронный ресурс] / С. В. Матренин, Б. Б. Овечкин; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 4.2 MB). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m33.pdf (контент).
- 4. Технологии аддитивного формообразования: учебное пособие [Электронный ресурс] / А. В. Вальтер; Национальный исследовательский Томский политехнический университет (ТПУ), Юргинский технологический институт (филиал) (ЮТИ). 1 компьютерный файл (pdf; 12.0 MB). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m160.pdf (контент)

Дополнительная литература

- 1. Основы материаловедения. Конструкционные материалы: учебное пособие [Электронный ресурс] / Ж. Г. Ковалевская, В. П. Безбородов; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 5.8 MB). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2010/m108.pdf (контент)
- 2. Наноструктурирование поверхностных слоев конструкционных материалов и нанесение наноструктурных покрытий = Nanostructuring of the surface layers of construction materials and nanostructured coating deposition : учебное пособие [Электронный ресурс] / В. Е. Панин, В. П. Сергеев, А. В. Панин; Национальный исследовательский Томский политехнический университет (ТПУ). Институт физики высоких технологий (ИФВТ), Институт физики прочности и материаловедения (ИФПМ). 2-е изд. 1 компьютерный файл (pdf; 20.8 МВ). Томск: Изд-во ТПУ, 2013.

Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m348.pdf (контент)

- 3. Ионно-плазменные технологии формирования покрытий и модификации поверхностей: учебное пособие [Электронный ресурс] / Н. Н. Никитенков [и др.]; Национальный исследовательский Томский политехнический университет (ТПУ). 2-е изд.. 1 компьютерный файл (pdf; 2.8 MB). Томск: Изд-во ТПУ, 2014. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/m183.pdf (контент).
- 4. Обеспечение качества деталей металлургического оборудования на всех этапах его жизненного цикла путем применения плазменной наплавки теплостойкими сталями высокой твердости: монография [Электронный ресурс] / Н. Н. Малушин, Д. В. Валуев; Национальный исследовательский Томский политехнический университет (ТПУ), Юргинский технологический институт (филиал) (ЮТИ), Кафедра металлургии и черных металлов (МЧМ). 1 компьютерный файл (pdf; 7.2 МВ). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m336.pdf (контент)

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Электронный курс «Материаловедение: модули «Кристаллизация», «Деформация и разрушение», «Структура деформированных металлов», «Сплавы, диаграммы состояния». Схема доступа: http://stud.lms.tpu.ru/course/view.php?id=329
- 2. Персональный сайт преподавателя: https://portal.tpu.ru/SHARED/k/KOVALEVSKAYA

Информационно-справочные системы:

- 1. Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb
- 2. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/

Профессиональные Базы данных:

1. Научная электронная библиотека eLIBRARY.RU – https://elibrary.ru

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного** программного обеспечения **ТПУ**):

1. MicrosoftOfficeStandard

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование	Наименование оборудования
	специальных помещений	
1.	Аудитория для проведения	Комплект оборудования для проведения занятий:
	учебных занятий всех типов,	Компьютер - 1 шт.
	курсового проектирования,	Микроскоп МИМ-8 - 2 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 15.03.01 Машиностроение, профиль «Машиностроение», специализация «Оборудование и высокоэффективные технологии в автоматизированном машиностроительном производстве» (приема 2020 г., очная форма обучения).

Разработчик(и):

Должность	ФИО
Доцент ОМ	Ж.Г. Ковалевская

Программа одобрена на заседании ОМ ИШНПТ (протокол № 36/1 от 01.09.2020г.)

Руководитель выпускающего отделения, д.т.н, профессор

подпись /

/В.А. Клименов/