МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРХ	КДАЮ	
Директо	ЕШИ	
Orr	Маті	веев А.С.
«29 »	06	2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2017 г. ФОРМА ОБУЧЕНИ заочная

Математическое моделирование в электротехнике Направление подготовки/ 13.03.02 Электроэнергетика и электротехника специальность Образовательная программа Электротехника (направленность (профиль)) Специализация Электрооборудование и электрохозяйство предприятий, организаций и учреждений Уровень образования высшее образование - бакалавриат 5 Курс семестр 9 Трудоемкость в кредитах 3 (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 10 Практические занятия Контактная (аудиторная) работа, ч Лабораторные занятия 10 ВСЕГО 20 Самостоятельная работа, ч 88 итого, ч 108

Вид промежуточной	Экзамен	Обеспечивающее	еши еео
аттестации	=	подразделение	
И.о. заведующего кафедрой -			Ивашутенко А.С.
руководителя отделения на	1		199
правах кафедры			
Руководитель ООП	Bla	rms -	Воронина Н.А.
		2	
Преподаватель	kn	and	Воронина Н.А.
•	J81a	-	-

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 6. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Код компет Наименование енции компетенции освоения ООП		Составляющие результатов освоения (дескрипторы компетенций)		
			Код	Наименование	
		ПК(У)-4.В4	Владеет навыками моделирования электротехнических систем		
ПК(У)	Способен проводить обоснование проектных	P8, P11, P12	ПК(У)-4.У4	Умеет применять методы математического анализа при проведении исследований и решении прикладных задач в профессиональной сфере	
	решений		ПК(У)-4.34	Знает общие принципы идеализации электротехнических систем при их математическом описании	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы (элективная дисциплина).

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине			
Код	Наименование	Компетенция	
РД 1	Применять информационные и информационно-коммуникационные	ПК(У)-4.	
, ,	технологии, для решения профессиональных задач по расчету и анализу		
	электрических устройств и объектов.		
РД 2	Применять базовые, математические и профессиональные знания при	ПК(У)-4.	
	моделировании и решении прикладных задач в профессиональной		
	деятельности		

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат	Виды учебной деятельности	Объем времени, ч.
	обучения по дисциплине		
Раздел 1. Методы решения	РД1, РД2	Лекции	2
систем дифференциальных		Практические занятия	-
уравнений, описывающих		Лабораторные занятия	2
процессы в электротехнических устройствах		Самостоятельная работа	20
Раздел 2. Математическое	РД1, РД2	Лекции	2
описание двигателя постоянного		Практические занятия	-
тока независимого возбуждения		Лабораторные занятия	2
		Самостоятельная работа	20
Раздел 3. Математическое	РД1, РД2	Лекции	2

описание асинхронного		Практические занятия	-
двигателя		Лабораторные занятия	2
		Самостоятельная работа	16
Раздел 4. Статические и	РД1, РД2	Лекции	2
динамические характеристики в		Практические занятия	-
асинхронном электроприводе со		Лабораторные занятия	2
скалярным управлением		Самостоятельная работа	16
Раздел 5. Оптимизация контура	РД1, РД2	Лекции	2
регулирования		Практические занятия	-
		Лабораторные занятия	2
		Самостоятельная работа	16

Содержание разделов дисциплины:

Раздел 1. Методы решения систем дифференциальных уравнений, описывающих процессы в электротехнических устройствах

Дифференциальные уравнения состояния для электрических цепей по законам Кирхгофа. Представление дифференциальных уравнения в нормальной форме. Обзор аналитических и численных методов решения дифференциальных уравнений. Операторный метод и численный метод Эйлера. Представление математического описания динамического объекта в виде операторной структурной схемы.

Темы лекций:

- 1. Дифференциальные уравнения состояния для электрических цепей по законам Кирхгофа. Законы коммутации в электрических цепях. Представление дифференциальных уравнения в нормальной форме Коши. Обзор аналитических и численных методов решения дифференциальных уравнений.
- 2. Решение дифференциальных уравнений операторным методом с помощью преобразований Лапласа и численным методом Эйлера на примере электрических цепей первого и второго порядка с нулевыми и ненулевыми начальными условиями.
- 3. Представление математического описания динамического объекта в виде структурной схемы с помощью прямого преобразования Лапласа. Примеры на электрических цепях первого и второго порядка.

Названия лабораторных работ:

1. Моделирование переходных процессов в электрических цепях.

Раздел 2. Математическое описание двигателя постоянного тока независимого возбуждения

Принцип работы двигателя постоянного тока. Математическое описание в форме дифференциальных уравнений. Решение полученных уравнений с помощью операторного метода и численного метода Эйлера. Структурная схема двигателя постоянного тока. Уравнения для статических режимов.

Темы лекций:

1. Физический принцип работы двигателя постоянного тока (ДПТ). Математическое описание ДПТ в форме дифференциальных уравнений. Решение полученных уравнений с помощью операторного метода и численного метода Эйлера. Структурная схема ДПТ. Уравнения для статических режимов.

Названия лабораторных работ:

1. Математическое моделирование двигателя постоянного тока независимого

Раздел 3. Математическое описание асинхронного двигателя

Физический принцип работы асинхронного электродвигателя. Уравнения для статических характеристик. Математическая модель асинхронного двигателя в неподвижной двухфазной системе координат. Структурная схема асинхронного электродвигателя.

Темы лекций:

1. Принцип работы асинхронного электродвигателя (АД). Уравнения для статических, механических и электромеханических характеристик. Математическая модель АД в неподвижной двухфазной системе координат. Структурная схема асинхронного электродвигателя.

Названия лабораторных работ:

1. Математическое моделирование асинхронного электродвигателя.

Раздел 4. Статические и динамические характеристики в асинхронном электроприводе со скалярным управлением

Общие сведения о скалярном частотном управлении асинхронным электродвигателем. Закон Костенко. Законы управления для различных типов нагрузки электропривода. Статические и динамические характеристики асинхронного электропривода со скалярным управлением.

Темы лекций:

- 1. Общие сведения о скалярном частотном управлении асинхронным электродвигателем. Закон Костенко. Законы управления для различных типов нагрузки электропривода. Закон регулирования U_1/f_1 =const: статические характеристики, структурная схема электропривода, случаи необходимости IR-компенсации и её реализация на модели.
- 2. Закон регулирования U_1/f_1^2 =const: статические характеристики, структурная схема электропривода, случаи необходимости коррекции вольт-частотной характеристики и её реализация на модели.

Названия лабораторных работ:

1. Моделирование скалярной системы управления асинхронным электродвигателем.

Раздел 5. Оптимизация контура регулирования

Основные сведения о системах подчиненного регулирования. Типы регуляторов. Модульный и симметричный оптимумы для синтеза замкнутого контура регулирования. Показатели качества переходных процессов.

Темы лекций:

1. Основные сведения о системах подчиненного регулирования. Типы регуляторов. Модульный и симметричный оптимумы для синтеза замкнутого контура регулирования. Показатели качества переходных процессов.

Названия лабораторных работ:

1. Оптимизация контура регулирования.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Глазырин А. С. Математическое моделирование электромеханических систем. Аналитические методы: учебное пособие [Электронный ресурс] / А. С. Глазырин; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 5.7 MB). Томск: Изд-во ТПУ, 2011. Заглавие с титульного экрана. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m26.pdf, дата обращения 05.03.2017.
- 2. Тарасик В.П. Математическое моделирование технических систем: учебник / В.П. Тарасик. Минск: Новое знание, 2013. 584 с. ISBN 978-985-475-539-7. Текст: электронный // Лань: электронно-библиотечная система. Схема доступа: https://e.lanbook.com/book/4324 Режим доступа: для авториз. пользователей , дата обращения 05.03.2017.

Дополнительная литература:

- 1. Бурулько Л. К. Математическое моделирование электромеханических систем: учебное пособие / Л. К. Бурулько; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2014. Ч. 1: Математическое моделирование преобразователей электрической энергии переменного тока. 1 компьютерный файл (pdf; 1.1 MB). 2014. Заглавие с титульного экрана. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m336.pdf, дата обращения 05.03.2017.
- 2. Аристов А. В. Имитационное моделирование электромеханических систем: учебное пособие для вузов [Электронный ресурс] / А. В. Аристов, Л. А. Паюк; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 899 KB). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m164.pdf, дата обращения 05.03.2017.
- 3. Терёхин В. Б. Компьютерное моделирование систем электропривода постоянного и переменного тока в Simulink: учебное пособие [Электронный ресурс] / В. Б. Терёхин, Ю. Н. Дементьев; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 9.2 MB). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m034.pdf (контент), дата обращения 05.03.2017.
- 4. Глазырин А. С. Математическое моделирование электромеханических систем. Аналитические методы: учебное пособие для вузов / А. С. Глазырин; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2011. 205 с.: ил.. Библиогр.: с. 194.. ISBN 978-5-98298-838-6, дата обращения 05.03.2017.

6.2. Информационное и программное обеспечение

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

- 1. Adobe Acrobat Reader DC
- 2. Google Chrome
- 3. Microsoft Office Standard Russian Academic
- 4. PTC Mathcad 15 Academic Floating
- 5. MathWorks MATLAB Full Suite R2017b
- 6. Document Foundation LibreOffice

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

Nº	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Усова улица, 7 330	Комплект оборудования для проведения занятий: Доска аудиторная настенная - 1 шт.; Комплект учебной мебели на 36 посадочных мест; Компьютер - 1 шт.; Телевизор - 1 шт.
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634034, Томская область, г. Томск, Усова улица, 7 121	Комплект оборудования для проведения занятий: Комплект учебной мебели на 16 посадочных мест; Компьютер - 16 шт.
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634034, Томская область, г. Томск, Усова улица, 7 127	Комплект оборудования для проведения занятий: Комплект учебной мебели на 33 посадочных мест; Шкаф для одежды - 1 шт.; Тумба подкатная - 2 шт.; Компьютер - 47 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы «Электротехника» по специализации «Электрооборудование и электрохозяйство предприятий, организаций и учреждений» направления 13.03.02 «Электроэнергетика и электротехника» (прием 2017 г., заочная форма)

Разработчик(и):

Должность	ФИО
доцент ОЭЭ	Воронина Н.А.

Программа одобрена на заседании кафедры Электропривода и электрооборудования ЭНИН (протокол от 16. 05. 2017 г. \mathbb{N}_{2} 9).

И.о. заведующего кафедрой - руководителя отделения на правах кафедры ОЭЭ ИШЭ,

к.т.н.

_/Ивашутенко А.С./

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании ОЭЭ ИШЭ (протокол)
2018/2019 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание разделов дисциплины 4. Обновлен список литературы, в том числе ссылок ЭБС	от 22.06.2018 г. №7
	5. Изменена система оценивания	от 27.08.2018 г. №4/1
2019/2020 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание дисциплины 4. Обновлен список литературы	от 27.06.2019 г. №6
2020/2021 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание дисциплины 4. Обновлен список литературы	от 25.06.2020 г. №6