ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2017 г.

ФОРМА ОБУЧЕНИЯ очная

Математика 1.1 Направление подготовки/ 13.03.02 Электроэнергетика и электротехника специальность Образовательная программа Электротехника (направленность (профиль)) Специализация Электроизоляционная, кабельная и конденсаторная техника Уровень образования высшее образование - бакалавриат Курс семестр Трудоемкость в кредитах 8 (зачетных единицах) Заведующий кафедрой -А.Ю Трифонов руководитель отделения на правах кафедры Руководитель ООП П.В. Тютева Преподаватель И.А. Цехановский

1. Роль дисциплины «Математика 1.1» в формировании компетенций выпускника:

Элемент образовательной	Семестр	Код р компетенции	Наименование компетенции	Результаты освоения ООП	Составляющие результатов освоения (дескрипторы компетенций)		
программы (дисциплина, практика, ГИА)	Семестр				Код	Наименование	
			Способен применять соответствующий физико-математический аппарат, методы анализа и моделировании, теоретического, экспериментального исследования при решении профессиональных задач	P7, P11	ОПК(У)- 2.В3	Владеет математическим аппаратом алгебры и дифференциального исчисления функции одной и нескольких переменных для описания, анализа, теоретического и экспериментального исследования и моделирования физических и геометрических задач	
Математика 1.1	1	ОПК(У)-2			ОПК(У)- 2.У5	Умеет применять линейную и векторную алгебру, строить геометрические образы, проводить исследования функций одной и нескольких переменных при решении инженерных задач	
					ОПК(У)- 2.35	Знает базовые понятия и методы линейной и векторной алгебры, аналитической геометрии, теории пределов, дифференциального исчисления	

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Код контролируемой	Наименование раздела	Методы оценивания
Код	Наименование	компетенции (или ее	дисциплины	(оценочные мероприятия)
РД 1	Владеет основными понятиями и методами линейной алгебры, аналитической геометрии и дифференциального исчисления функции одной и нескольких переменных	части) ОПК(У)-2	1. Линейная алгебра 2. Векторная алгебра 3. Аналитическая геометрия 4. Введение в анализ 5. Дифференциальное исчисление функции одной переменной 6. Дифференциальное исчисление функции нескольких переменных	Контрольная работа ИДЗ. Экзамен
РД 2	Умеет вычислять определители, выполнять действия с матрицами, исследовать и решать системы линейных алгебраических уравнений; производить действия над векторами; геометрически и аналитически представлять прямую и плоскость; устанавливать взаимное расположения прямых и плоскостей; приводить общие уравнения кривых и поверхностей к каноническому виду и строить их; находить пределы функций и числовых последовательностей; дифференцировать и исследовать функции одного и нескольких переменных	ОПК(У)-2	1. Линейная алгебра 2. Векторная алгебра 3. Аналитическая геометрия 4. Введение в анализ 5. Дифференциальное исчисление функции одной переменной 6. Дифференциальное исчисление функции нескольких переменных	Контрольная работа ИДЗ. Экзамен
РД 3	Знает алгебру матриц, основные характеристики матриц, их определения и свойства; методы решения систем линейных алгебраических уравнений; методы векторной алгебры; свойства и уравнения основных геометрических образов ;основные положения теории пределов; правила и методы нахождения производных функций одной и нескольких переменных, схему полного исследования функции	ОПК(У)-2	1. Линейная алгебра 2. Векторная алгебра 3. Аналитическая геометрия 4. Введение в анализ 5. Дифференциальное исчисление функции одной переменной 6. Дифференциальное исчисление функции нескольких переменных	Контрольная работа ИДЗ. Экзамен

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка – максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля*

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности
70% ÷ 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности
55% ÷ 69% «Удовл.»		Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности
0% ÷ 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена*

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки	
90% ÷ 100%	$36 \div 40$	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности	
70% ÷ 89%	$28 \div 35$	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности	
55% ÷ 69%	22 ÷ 27	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности	
0% ÷ 54%	0 ÷ 21	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям	

4. Перечень типовых заданий

Оценочные мероприяти	Примеры типовых контрольных заданий			
Я	L'arrent au vag na Sana u Harra Sura a anna Sura u			
Контрол	Контрольная работа «Линейная алгебра» ВАРИАНТ №1			
ьная работа				
puooru	2 4 -3 1			
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
	а) Запишите разложение данного определителя по четвёртому столбцу;			
	б) вычислите определитель, получив предварительно нули в какой – либо строке или столбце.			
	$\begin{vmatrix} x + 2y - z = -1, \\ 2 & 1 \end{vmatrix}$			
	2 . Решить систему уравнений методом обратной матрицы: $\begin{cases} x + 2y - z = -1, \\ 3y - z = 1, \\ x + 4y + z = 5. \end{cases}$			
	·			
	x вычислить также методом Крамера.			
	3. Исследовать систему на совместность и решить методом Гаусса			
	$\begin{cases} x_2 + x_3 + x_4 = 1 \end{cases}$			
	$\begin{cases} x_1 & -x_3 - x_4 = 2 \\ x_1 + x_2 & -x_4 = 3 \\ x_1 + x_2 + x_3 & = 4 \end{cases}$			
	$\begin{cases} x_1 + x_2 & -x_4 = 3 \end{cases}$			
	$\begin{vmatrix} x_1 & x_2 & x_4 \\ x_1 + x_2 + x_3 & = 4 \end{vmatrix}$			
	$2x_1 + x_2 + 3x_3 + 2x_4 = 0,$			
	4. Дана система однородных линейных уравнений $\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 = 0, \\ 2x_1 + x_2 + 2x_3 + x_4 = 0, \end{cases}$			
	$2x_1 + x_2 + 5x_3 + 4x_4 = 0,$			
	$2x_1 + x_2 + 4x_3 + 3x_4 = 0.$			
	а) Докажите, что система имеет нетривиальные решения;			
	б) Найдите общее решение системы; в) найдите фундаментальную систему решений.			

Оценочные мероприяти	Примеры типовых контрольных заданий		
Я			
	. При каких значениях параметра λ система линейных уравнений		
	с расширенной матрицей $\begin{pmatrix} 2 & 1 & 1 & & 4 \\ 1 & \lambda & 1 & & 3 \\ 1 & 2\lambda & 1 & & 4 \end{pmatrix}$ совместна?		
	Контрольная работа по теме «Векторная алгебра» ВАРИАНТ №1		
	I. Даны четыре вектора: $\vec{a} = \{4,5,2\}; \vec{b} = \{3,0,1\}; \vec{c} = \{-1,4,2\}; \vec{d} = \{5,7,8\}.$		
	1. Доказать, что векторы \vec{a} , \vec{b} , \vec{c} образуют базис и найти разложение вектора \vec{d} в этом базисе.		
	2. Найти косинус угла между векторами \vec{a} и \vec{b} .		
	3. Найти длину вектора $\vec{g} = \vec{a} + 2\vec{b} + 3\vec{c}$.		
	II. Даны четыре точки: $A(1;3;0), B(4;1;2), C(3;0;1), D(-4;3;5)$.		
	4. Найти объём пирамиды \overrightarrow{ABCD} и длину высоты , опущенной из вершины D на грань \overrightarrow{ABC} . 5. Найти проекцию вектора \overrightarrow{AB} на ось вектора \overrightarrow{CD} . 6. Найти координаты вектора $[(\overrightarrow{BC} + \overrightarrow{AB}), \overrightarrow{CB}]$.		
	III. Параллелограмм построен на векторах $\vec{a} = \vec{p} + 4\vec{q}$, $\vec{b} = \frac{1}{2}(\vec{p} - \vec{q})$, где $ \vec{p} = 4$, $ \vec{q} = 2$, $(\vec{p} \wedge \vec{q}) = \frac{\pi}{3}$.		
	Определить: а) косинус тупого угла между диагоналями; б) длину высоты, опущенной на сторон		
	Контрольная работа по теме «Аналитическая геометрия» ВАРИАНТ №1		
	1. Определить при каких значениях a прямая $(a+2)x + (a^2-9)y + 3a^2 - 8a + 5 = 0$ параллельна оси ОХ.		
	2. Составить уравнения прямых, параллельных прямой		
	3x - 4y - 10 = 0 и отстоящих от нее на расстояние $d=3$ 3. Даны вершины треугольника $A(2,6)$, $B(4,-2)$, $C(-2,-6)$.		
	Составить уравнение высоты из вершины A и уравнение медианы из вершины C .		

Оценочные мероприяти я	Примеры типовых контрольных заданий		
	4. Привести к каноническому виду, назвать и построить кривые: a) $16x^2 + 25y^2 + 32x - 100y - 284 = 0$; б) $y^2 - 4y - 20x + 24 = 0$.		
	5. Из общих уравнений прямой : $2x + y - 3z - 9 = 0$, $-2x + 3z + 4 = 0$ получить канонические и параметрическое уравнения прямой.		
	6. Найти проекцию точки $A(1,2,0)$ на плоскость $8x + 6y + 8z - 25 = 0$.		
	7. Построить тело, ограниченное поверхностями $x^2 = z$, $x + y = 2$, $y \ge 0$, $z \ge 0$.		
	Контрольная работа по теме «Введение в анализ»		
	1. $\lim_{n\to\infty} \frac{\sqrt{n^2-4n}}{\sqrt[3]{2n^3+1}}$; 2. $\lim_{n\to\infty} \frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^n}}{n-1}$;		
	3. $\lim_{x \to 1} \frac{\sqrt{1+x^2}}{2x}$; 4. $\lim_{x \to \infty} \frac{6x^2 + 2x}{3x^2 + 1}$;		
	5. $\lim_{x \to 2} \frac{\sqrt{x^2 - 3} - 1}{x - 2}$; 6. $\lim_{x \to 0} \frac{x^2}{1 - \cos x}$;		
	7. $\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^{\frac{x^2+1}{x}}$; 8. $\lim_{x \to 0} \frac{\ln(x^2+2) - \ln 2}{x^2}$;		

Оценочные мероприяти я	Примеры типовых контрольных заданий
-	9. $\lim_{x \to 0} \frac{e^{2x} - e^x}{x}$; 10. $\lim_{x \to 2} \frac{\sin(2 - x)}{\sqrt{2x} - 2}$.
	II. Определить порядок б. м. $\alpha(x)$ при $x \to 0$ относительно x :
	1. $\alpha(x) = \ln(1 + \sqrt[3]{x^2 \cdot \lg x})$, 2. $\alpha(x) = \sqrt{2x+1} - 1$.
	III. Найти точки разрыва функции, указать их характер. Построить график функции в окрестности точек разрыва:
	1. $f(x) = \begin{cases} 0, ecnu \ x < 0, \\ x^2, ecnu \ 0 \le x < 1, \\ x + 2, ecnu \ x \ge 1. \end{cases}$ 2. $y = \frac{\frac{1}{2^{1-x}}}{\frac{1}{1-x}}, 3. \ y = \frac{1}{x^2 - 4}.$
	Контрольная работа по теме «Дифференциальное исчисление функции одного переменного» ВАРИАНТ №1
	I. Найти производные следующих функций:
	1. $y = (e^{\cos x} + 3x)^2$; 2. $3^x + 3^y = x - 2y$; 3. $y = (\operatorname{tg}2x)^{\cot(\sqrt{\frac{x}{2}})}$;
	II. Найти вторую производную $\frac{d^2y}{dx^2}$:
	1. $y = \frac{x^2}{x^2 - 1}$, 2. $\begin{cases} x = \cos(t/2), \\ y = t - \sin t. \end{cases}$ 3. $y = \sin(x - y)$
	III Пользуясь правилом Лопиталя найти пределы:

Оценочные мероприяти я	Примеры типовых контрольных заданий
	1. $\lim_{x \to 1} \left(\frac{x^2}{x - 1} - \frac{1}{\ln x} \right)$ 2. $\lim_{x \to 1 - 0} (\sin \pi x)^{\cos \frac{\pi x}{2}}$
	IV Провести полное исследование функции $y=xe^{-\frac{1}{x}}$ и построить её график
	Контрольная работа по теме «Дифференциальное исчисление ФНП» ВАРИАНТ №1
	I. Найти и построить область определения функции: $z = \sqrt{x} \ln(1 - x - y);$
	II. Найти указанные производные
	$u = (xy)^{z+1}$. $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, $\frac{\partial^2 u}{\partial x \partial z} = ?$
	III. Проверить, удовлетворяет ли функция $u = x^2 F\left(\frac{x}{z}, \frac{y}{x}\right)$ уравнению $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2u$.
	IV. Составить уравнение нормали к поверхности $x^2 - 2x + 6y - z^2 = 4$ параллельно прямой $\frac{x}{1} = \frac{y-2}{3} = \frac{z-1}{4}$.
	V. Найти наибольшее и наименьшее значение функции: $z=8x+y-xy$ в замкнутой области, ограниченной линиями $x=0,y=0,x+y=10$.
идз.	Пример варианта индивидуальных заданий.

Оценочные мероприяти я			
	Линейная алгебра		
	1. Вычислить определители		
	a) $\begin{vmatrix} 12 & 3 & -1 & 2 \\ 1 & 1 & 0 & -1 \\ -4 & 2 & 4 & -2 \\ -2 & 0 & 1 & -1 \end{vmatrix}$ b) $\begin{vmatrix} -7 & -3 & 2 & 4 \\ -2 & 0 & 1 & 1 \\ -4 & 2 & 1 & 3 \\ -3 & -2 & 2 & 1 \end{vmatrix}$		
	${f 2}$. Найти матрицу ${f X}$ из уравнения. Сделать проверку		
	$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 11 & -15 \\ 2 & -8 & 3 \\ 11 & 7 & 0 \end{pmatrix}.$		
	3. Решить системы линейных уравнений: а) методом Крамера, b) матричным методом		
	a) $\begin{cases} 3x + 4y - 2z = 26 \\ x - y + 3z = -2 \\ 3x - 3y + 5z = -2 \end{cases}$ b) $\begin{cases} x + 5y - z = 5 \\ 3x + 8y + z = 7 \\ 4x - 6y + z = 10 \end{cases}$		
	4. Решить системы методом Гаусса		
	a) $\begin{cases} x_2 -3x_3 +4x_4 = -5\\ x_1 -2x_3 +3x_4 = -4\\ 3x_1 +2x_2 -5x_4 = 12\\ 4x_1 +3x_2 -5x_3 = 5 \end{cases}$		
	$b) \begin{cases} x_1 + 3x_2 + 5x_3 - 4x_4 & = 1 \\ x_1 + 3x_2 + 2x_3 - 2x_4 + x_5 & = -1 \\ x_1 - 2x_2 + x_3 - x_4 - x_5 & = 3 \\ x_1 - 4x_2 + x_3 + x_4 + x_5 & = 3 \\ x_1 + 2x_2 + x_3 - x_4 + x_5 & = -1 \end{cases}$		
	$\begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$		

Оценочные мероприяти я	Примеры типовых контрольных заданий
Тестиро вание — независи мый контроль ЦОКО (РТ1 и РТ2)	Вопросы: 1. С помощью элементарных преобразований расширенная матрица системы линейных уравнений приведена к виду $\begin{pmatrix} 1 & -1 & 2 & 0 & 1 & & 0 \\ 0 & 0 & 0 & 0 & 0 & & 1 \\ 0 & 1 & 0 & 2 & 0 & & 0 \end{pmatrix}$ Выберите верные утверждения, если A – основная матрица системы, A – расширенная илица системы. 1. $rang(A) = 2$ 2. $rang(A) = 3$ 3. $rang(A) = 2$ 4. $rang(A) = 3$ 5. система совместна 6. система несовместна 2. Высота треугольника ABC , опущенная из вершины C , если $A(3;1;2)$, $B(5;-3;6)$, $C(3;0;4)$ равна

Оценочные мероприяти		Примеры типовых контрольных з	аданий
Я		1	
	$y = \sqrt{\sin x}$	$dy = \frac{\cos x}{2\sqrt{\sin x}} dx$	
	$y = \frac{1}{\sqrt{\sin x}}$	$dy = -\frac{\cos x}{2\sqrt{\sin^3 x}} dx$	
	$y = \frac{1}{\sqrt[3]{\sin x}}$	$dy = -\frac{\cos x}{3\sqrt[3]{\sin^4 x}} dx$	
		$dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$	
		$dy = \frac{1}{2\sqrt{\sin x}} dx$	
	6. Определите порядок малости бесконечно ма	ллой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$	относительно $\frac{1}{x}$ при $x \to \infty$
	$K = $ 7. Функция $y = 6x \cdot e^{-2x}$ убывает для значений	x	
	$1 \cdot x \in (-\infty; 1/2)$		
	2. $x \in (1/2; +\infty)$ 3. $x \in (-\infty; -1/2) \cup (1/2; +\infty)$ 4. $x \in (-1/2; +\infty)$		
	5. $x \in (1/2;0)$.		
	8 . Для функции $z = z(x; y)$ известно		

Оценочные мероприяти я	Примеры типовых контрольных заданий		
Экзамен	$z_x'(M) = z_y'(M) = 0$ $z_{xx}''(M) = 5; \ z_{xy}''(M) = 1; \ z_{yy}''(M) = -2$ Тогда точка М является точкой минимума не является точкой экстремума является точкой максимума является стационарной точкой не является стационарной точкой		
	ТПУ Экзамен Курс 1		
	Вариант 1		
	1. Сформулировать и доказать теорему Лагранжа. 2. Уравнения прямой в пространстве 3. Найдите пределы: а) $\lim_{x \to \infty} \frac{2^{x+1} + 3^{x-2}}{2^{x-1} - 3^x}$. в) $\lim_{x \to +0} xe^{\frac{1}{x}}$. 4. Найдите все частные производные первого порядка функции $u = \sqrt{2x^2 - 3y}$. 5. Определите точки перегиба и интервалы выпуклости и вогнутости функции $y = x^{\frac{1}{5}}e^x$. 6. Дана система линейных уравнений $\begin{cases} x_1 - x_2 - 2x_3 + x_4 - x_5 = -2, \\ -x_1 + 2x_2 - x_3 + x_4 - x_5 = -2, \\ x_1 + x_2 - x_4 + 2x_5 = -1. \end{cases}$		
	 7. Составьте уравнение плоскости, которая проходит через точки M₁(7, 2, -3) и M₂(5, 6, -4) параллельно оси Ox. 8. Приведите уравнение кривой к каноническому виду и постройте кривую 		

Оценочные мероприяти я	Примеры типовых контрольных заданий
	$16x^2 - 9y^2 - 64x + 18y = 89.$
	Экзаменационный билет 1
	1. Найти предел $\lim_{x\to 0} \frac{e^{3\sin 2x}-1}{2x^4+5x}$.
	2 . Записать уравнения всех асимптот кривой $y = x^3 \ln x$.
	3 . Исследовать на экстремум функцию $y = \ln \sqrt{x^2 + 1} + \operatorname{arctg} x$.
	4. Найти и изобразить область определения функции $z = \ln x + \sqrt{x - y}$ 5. Исследовать на экстремум функцию $z(x; y) = x^2 - y^3 - 3x + 6y$
	Экзаменационный билет № <i>X</i>
	1. Скалярное произведение векторов, его свойства и применение.
	2. Взаимное расположение прямой и плоскости в пространстве.
	3. Вычислить определитель $\begin{vmatrix} -3 & 2 & 5 \\ -2 & 7 & 11 \\ -1 & -6 & 4 \end{vmatrix}$.
	4. Найти косинус угла при вершине A и площадь треугольника с вершинами в точках $A(3;-4;1)$, $B(-2;8;0)$,

Оценочные мероприяти	Примеры типовых контрольных заданий
SI SI	C(-1;5;-2).
	5.Записать уравнение прямой, проходящей через точку $M(-9;4)$ перпендикулярно прямой $\frac{x-1}{5} = \frac{y+2}{-7}$.
	6. Найти координаты точки пересечения прямой $\begin{cases} x=2t+7\\ y=-t+4\\ z=5t-2 \end{cases}$ и плоскости $3x+9y-3z+1=0$.
	7. Построить a) кривую $x = -2 - \sqrt{2 - 3y}$;
	 Экзаменационные вопросы Что такое определитель? При каких преобразованиях величина определителя не меняется В каких случаях определитель равен нулю? Что следует из равенства определителя нулю? Дайте определение минора и алгебраического дополнения элемента определителя. Сформулируйте правило вычисления определителя. Как осуществляются линейные операции над матрицами? Как перемножаются две матрицы? Свойства произведения матриц. Какова схема нахождения обратной матрицы? Дайте определения решения системы линейных алгебраических уравнений. Расшифруйте понятия «совместная», «несовместная», «неопределённая» системы. Напишите формулы Крамера. В каком случае они применимы? Что называется рангом матрицы? Как он находится? Сформулируйте теорему Кронекера – Капелли. При каких условиях система линейных алгебраических уравнений имеет множество решений? Когда она имеет единственное решение? Опишите метод Гаусса решения систем линейных уравнений. Какие неизвестные называются свободными, а какие базисными? Какие пеизвестные называются свободными, а какие базисными? Какие особенности решения однородных систем линейных алгебраических уравнений Вы знаете? Как строится фундаментальная система решений? Как выполняются линейные операции над векторами? Каковы свойства этих операций?

Оценочные	Примеры типовых контрольных заданий
мероприяти	
	• Какие вектора называются линейно зависимыми, а какие линейно независимыми?
	• Что такое базис? Какие вектора образуют базис на плоскости и в пространстве?
	• Какой базис называют декартовым?
	• Что такое координаты вектора?
	 Что называется скалярным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?
	 Что называется векторным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?
	 Что называется смешанным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?
	• Запишите в векторной и координатной формах условия коллинеарности, ортогональности и компланарности векторов.
	• Прямая линия на плоскости, её общее уравнение
	• Дайте понятие нормального и направляющего векторов прямой на плоскости, углового коэффициента.
	• Запишите различные виды прямой и укажите геометрический смысл параметров уравнения.
	 Запишите условия параллельности и перпендикулярности прямых на плоскости в случае различных видов уравнений прямых.
	 Как найти точку пересечения прямых на плоскости?
	• Как вычисляется расстояние от точки до прямой на плоскости?
	• Дайте определение эллипса и запишите его каноническое уравнение.
	• Дайте определение гиперболы и запишите её каноническое уравнение
	• Дайте определение параболы и запишите её каноническое уравнение
	• Изложите схему приведения общего уравнения кривой второго порядка к каноническому виду.
	• Дайте понятие полярной системы координат.
	• Опишите параметрический способ построения линий на плоскости
	• Плоскость, её общее уравнение
	• Как определяется взаимное расположение плоскостей? Запишите условия параллельности и перпендикулярности плоскостей.
	• Как вычисляется расстояние от точки до плоскости?
	• Запишите различные виды уравнений прямой в пространстве и поясните смысл параметров, входящих в уравнения.
	• Изложите схему приведения общих уравнений прямой к каноническому виду.
	• Как определить взаимное расположение прямых в пространстве?
	• Как вычисляется расстояние от точки до прямой в пространстве?
	• Как определить взаимное расположение прямой и плоскости?

Оценочные мероприяти	Примеры типовых контрольных заданий
Я	
	• Как ищется точка пересечения прямой и плоскости?
	• Назовите поверхности второго порядка и напишите их канонические уравнения.
	• Сформулируйте понятие предела числовой последовательности
	• Сформулируйте понятие предела функции одной переменной
	• Что такое односторонние пределы функции в точке?
	• Сформулируйте понятия бесконечно малой и бесконечно большой при $x \to a$ функции.
	• Первый и второй замечательные пределы
	• Как сравниваются бесконечно малые величины? Что такое относительный порядок малости?
	• Какие бесконечно малые называются эквивалентными? Приведите примеры эквивалентных бесконечно малых.
	• Какими свойствами обладают функции, непрерывные на замкнутом промежутке?
	• Что понимают под точкой разрыва функции? Какие разрывы различают?
	• Как связаны понятия непрерывности и дифференцируемости функции в точке?
	• Запишите правила дифференцирования обратной и сложной функций.
	• Запишите правила дифференцирования неявно заданной функции и функции, заданной параметрически.
	• Что такое дифференциал функции? Каков его геометрический смысл?
	• Какими свойствами обладают дифференцируемые функции?
	• Как находятся дифференциалы и производные высших порядков?
	• Формула Тейлора
	• Что такое точка экстремума функции? Какие точки экстремума бывают?
	• Необходимое условие существования экстремума для дифференцируемой функции
	• Достаточные условия существования экстремума
	• Схема исследования на экстремум функции одного переменного
	• Схема нахождения наибольшего и наименьшего значения функции на замкнутом промежутке.
	• Дайте определение выпуклости и вогнутости кривой на промежутке.
	• Какие точки называются точками перегиба?
	• Что называется асимптотой графика функции? Какие асимптоты различают?
	• В чем состоит правило Лопиталя? Для раскрытия каких неопределённостей оно применяется?
	• Дайте определение предела функции нескольких переменных.
	• Сформулируйте определение частных производных для функции нескольких переменных.
	• Что называется дифференциалом функции нескольких переменных
	• В чем состоят достаточные условия дифференцируемости функции нескольких переменных?
	• Как находятся частные производные высших порядков? Сформулируйте условия равенства смешанных производных.

Оценочные	Примеры типовых контрольных заданий	
мероприяти		
Я		
	• Как ищутся касательная плоскость и нормаль к поверхности?	
	• Сформулируйте определение экстремума для функции нескольких переменных. Каковы необходимые условия его существования?	
	 Сформулируйте достаточные условия существования экстремума для функции двух переменных Приведите схему нахождения наибольшего и наименьшего значения функции в замкнутой области. 	
	• Приведите елему налождения наиоольшего и наименьшего значения функции в замкнутои ооласти.	

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	В семестре студенты выполняют 6 контрольных работ, содержание которых охватывает все дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с рейтинг-планом дисциплины.
		Критерии оценки задания:
		• Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в соответствие с рейтинг- планом, на долю верно выполненных заданий.
2.	ИДЗ	В семестре студенты выполняют 8 ИДЗ по всем разделам программы дисциплины. У каждого студента в группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе группы. Преподаватель обеспечивает своевременное получение студентами вариантов ИДЗ, а также предоставляет электронную ссылку на сборник ИДЗ. Все ИДЗ размещены в электронном курсе по дисциплине. ИДЗ выполняются в отдельной тетради, при оформлении каждого задания обязательно указывается его номер, приводится кратко условие каждого задания. Решение каждого задания должно быть подробным, с включением промежуточных расчётов, рассуждений, пояснений, с указанием использованных методов и формул. ИДЗ проверяет преподаватель, ведущий практические занятия. Студенты должны выполнить ИДЗ до контрольной работы по теме. За каждое ИДЗ выставляются баллы, максимальный балл указывается в рейтинг-плане.

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		Критерии оценки одного задания: Задание считается зачтенным, если выполнено более половины заданий Если задание не зачтено, работа возвращается студенту на доработку. Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку. Преподаватель может учесть исправления и добавить баллы к предыдущим
3.	Экзамен	«Положение о проведении текущего оценивания и промежуточной аттестации в ТПУ» приказ №88/од от 27.12.2013 г., «Руководящие материалы по текущему контролю и успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета (приказ №77/од от 29.11.2011г.)») На экзамене студенту выдаются билеты, включающие теоретические вопросы и практические задания. Преподаватель, проверив работу, в ходе устной беседы со студентом может задавать вопросы по самому билету, а также дополнительные вопросы по теории и практике. В итоге студент набирает итоговый балл за экзамен, максимально 40 баллов. Оценка за дисциплину формируется как итоговая за работу в семестре и экзамен в соответствие с принятой шкалой оценивания. Студенты, не сдавшие экзамен в сессионный период, могут пересдать его в периоды ликвидации задолженностей в соответствие с действующей процедурой. Результаты промежуточной аттестации оформляются ведомостью и вносятся в зачетную книжку обучающегося.