МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

Директор обеспечивающей Инженерной школы Информационных технологий и

робототехники

Д.М. Сонькин 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

Теория автоматического управления 1

15.03.04 Направление подготовки/ Автоматизация технологических специальность процессов и производств Образовательная программа Автоматизация технологических процессов и (направленность (профиль)) производств в нефтегазовой отрасли Специализация Программно-технические комплексы управления производственными процессами Уровень образования высшее образование - бакалавриат Курс 3 семестр 5 Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 24 Контактная (аудиторная) Практические занятия 24 Лабораторные занятия работа, ч 16 ВСЕГО 64 Самостоятельная работа, ч 80 ИТОГО, ч 144

Вид промежуточной	Экзамен	Обеспечивающ	ee OAP
аттестации		подразделен	ие
Заведующий кафедрой – руководитель Отделения Руководитель ООП Преподаватель		poel-	Филипас А.А. Громаков Е. И. Малышенко А. М.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся по образовательной программе «Автоматизация технологических процессов и производств в нефтегазовой отрасли» (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименование	Составляющие результатов освоения (дескрипторы компетенций)	
компетенции	компетенции	Код	Наименование
	Способен	ПК(У)-6.В1	Владеет опытом расчета систем автоматического управления, вещественным интерполяционным методом; технологией достижения робастности систем автоматического управления по перерегулированию; изменения узлов интерполирования как инструментом настройки решения уравнения синтеза регуляторов на заданные показатели качества; методики получения моделей систем управления и их элементов по экспериментальным данным
ПК(У)-6	проводить диагностику состояния и динамики производственны х объектов производств с использованием необходимых методов и средств анализа	ПК(У)-6.У1	Умееет получать модели в форме функций с вещественным аргументом функций изображений с вещественным аргументом по лапласовым изображениям, по переходным и импульсным переходным характеристикам; получать модели систем и их элементов в форме численных характеристик; составлять уравнения синтеза регуляторов систем автоматического управления; — решать итерационным методом уравнения синтеза регуляторов систем автоматического управления; обеспечивать в синтезированной системе автоматического управления робастность по перерегулированию
ПК(У)-6.31	Знает способы получения математических моделей динамических систем и их элементов в форме функций изображений с вещественным аргументом; пути достижения свойств робастности исполнительных систем управления на основе применения математических моделей в форме функций с вещественным аргументом		

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Код	Наименование	
РД1	применять глубокие естественнонаучные, математические и технические знания в области анализа, синтеза и проектирования систем автоматического управления, достаточные для решения научных и инженерных задач на мировом уровне, демонстрировать всестороннее понимание используемых современных методов, алгоритмов, моделей и технических решений, используемых при разработке систем автоматического управления	ПК(У)-6
РД2	воспринимать, обрабатывать, анализировать и обобщать научнотехническую информацию, передовой отечественный и зарубежный	ПК(У)-6

опыт в области теории систем автоматического управления, принимать участие в фундаментальных и прикладных исследованиях по созданию новых методов и алгоритмов синтеза и анализа систем автоматического и автоматизированного управления, включая мехатронных и робототехнических систем управления, а также участвовать в командах по разработке таких устройств и систем.

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат	Виды учебной деятельности	Объем времени, ч.
	обучения по дисциплине		
Раздел (модуль) 1. Основные		Лекции	8
понятия, определения и	РД-1	Практические занятия	4
классификация систем	РД-2	Лабораторные занятия	4
автоматического управления		Самостоятельная работа	20
Раздел (модуль) 2.		Лекции	4
Математические модели и	РД-1	Практические занятия	6
типовые характеристики	РД-2	Лабораторные занятия	4
элементов и систем управления		Самостоятельная работа	20
Раздел (модуль) 3.		Лекции	6
Фундаментальные свойства	РД-1	Практические занятия	6
управляемых объектов и систем	РД-2	Лабораторные занятия	4
		Самостоятельная работа	20
Раздел (модуль) 4.		Лекции	6
Установившиеся и переходные	РД-1	Практические занятия	8
процессы в линейных системах	РД-2	Лабораторные занятия	4
управления. Синтез систем	1 4-2	Самостоятельная работа	20
автоматического управления			

Содержание разделов дисциплины:

Раздел 1. *Основные понятия, определения и классификация систем автоматического управления*

Автоматические устройства и системы, их классификация по назначению. Управление и регулирование. Управляемые объекты и их классификация. Управляемые величины, управляющие и возмущающие воздействия в объектах управления. Системы неавтоматического, автоматического и автоматизированного управления. Обобщенная структурная схема систем управления.

Типовые задачи автоматического управления и регулирования: управление структурными связями в объекте, его алгоритмическим обеспечением, координатами, параметрами и свойствами. Автоматическая стабилизация, программное управление, автоматическое слежение, экстремальное регулирование, терминальное, финитное, противоаварийное и восстанавливающее управления. Формализованное описание задач управления и регулирования.

Основные принципы управления, используемые в САУ. Управления жесткое, по возмущению, по отклонению, игровое, дуальное, адаптивное, с моделью желаемого процесса; сферы их применения и сопоставительный анализ.

Классификация систем управления. Системы прямого и непрямого управления,

непрерывного и дискретного действия, с одномерными и многомерными по входам и выходам объектами управления. Системы связанного и несвязанного, зависимого и независимого управления. Системы с избыточной размерностью вектора управления. Обыкновенные, адаптивные и игровые системы.

Темы лекций:

- 1. Автоматические устройства и системы. Управляемые объекты. Системы неавтоматического, автоматического и автоматизированного управления. Обобщенная структурная схема систем управления.
- 2. Типовые задачи автоматического управления и регулирования. Автоматическая стабилизация, программное управление, автоматическое слежение, экстремальное регулирование, терминальное, финитное, противоаварийное и восстанавливающее управления. Формализованное описание задач управления и регулирования.
- 3. Основные принципы управления, используемые в САУ. Управления жесткое, по возмущению, по отклонению, игровое, дуальное, адаптивное, с моделью желаемого процесса; сферы их применения и сопоставительный анализ.
- 4. Классификация систем управления. Системы прямого и непрямого управления, непрерывного и дискретного действия, с одномерными и многомерными по входам и выходам объектами управления. Системы связанного и несвязанного, зависимого и независимого управления. Системы с избыточной размерностью вектора управления. Обыкновенные, адаптивные и игровые системы.

Темы практических занятий:

- 1. Типовые задачи и принципы управления.
- 2. Структурные схемы систем автоматического управления.

Названия лабораторных работ:

- 1. Моделирование линейных динамических систем с использованием MatLab и Simulink (часть 1).
- 2. Моделирование линейных динамических систем с использованием MatLab и Simulink (часть 2).

Раздел 2. *Математические модели и типовые характеристики элементов и систем управления*

Возможные виды математических моделей элементов и систем управления. Непрерывные и дискретные; стационарные и нестационарные; линейные и нелинейные; статические и динамические; обыкновенные, логические и логико-обыкновенные системы; детерминированные и стохастические устройства и системы и их математические модели.

Обобщенное состояние и его использование для типизации математических моделей элементов и систем управления.

Типовые математические модели состояний и процессов в элементах и системах управления: в упорядоченной канонической форме; в форме «вход—выход»; в форме «вход-состояние-выход»; в форме передаточных функций и матриц. Типовые операторные, временные и частотные характеристики линейных обыкновенных стационарных систем. Построение и преобразование операторно-структурных схем САУ. Типовые звенья САУ.

Темы лекций:

- 5. Виды математических моделей элементов и систем управления. Обобщенное состояние и его использование для типизации математических моделей элементов и систем управления.
- 6. Типовые математические модели состояний и процессов в элементах и системах управления. Типовые операторные, временные и частотные характеристики линейных обыкновенных стационарных систем. Построение и преобразование

Темы практических занятий:

- 1. Математические модели в системах автоматического управления.
- 2. Передаточные функции и матрицы линейных систем автоматического управления.
- 3. Типовые характеристики линейных объектов и систем управления.

Названия лабораторных работ:

- 3. Частотный анализ типовых звеньев САУ.
- 4. Исследование статических и динамических характеристик соединений звеньев.

Раздел 3. Фундаментальные свойства управляемых объектов и систем

Инерционность объектов и систем управления. Каузальность и память вход-выходных динамических систем, их квалиметрия и способы определения их количественных мер.

Управляемость, достижимость, наблюдаемость, восстанавливаемость и возмущаемость управляемых объектов и систем и их количественные меры.

Устойчивость динамических систем «в малом», «в большом» и «в целом». Асимптотическая устойчивость. Алгебраические и частотные критерии устойчивости линейных стационарных непрерывных систем. Критерии Гурвица, Рауса, Михайлова, Найквиста. Запасы устойчивости. Критические коэффициенты передачи систем. Критерии устойчивости систем с интервально-определенными параметрами.

Темы лекций:

- 7. Инерционность объектов и систем управления. Каузальность и память входвыходных динамических систем, их квалиметрия и способы определения их количественных мер.
- 8. Управляемость, достижимость, наблюдаемость, восстанавливаемость и возмущаемость управляемых объектов и систем и их количественные меры.
- 9. Устойчивость динамических систем. Асимптотическая устойчивость. Методы оценки устойчивости систем.

Темы практических занятий:

- 1. Устойчивость линейных систем автоматического управления.
- 2. Анализ качества линейных систем управления.
- 3. Системы с переменными и интервально-определенными параметрами.

Названия лабораторных работ:

- 5. Исследование типовых установившихся режимов САУ.
- 6. Исследование устойчивости систем с обратной связью.

Раздел 4. Установившиеся и переходные процессы в линейных системах управления. Синтез систем автоматического управления

Статические режимы в линейных системах управления. Статическое и астатическое управление. Способы определения астатизма в линейных системах.

Установившиеся динамические режимы в линейных элементах и системах управления и способы их анализа. Нули линейных систем и их влияние на вход-выходные отображения.

Методы повышения точности линейных САУ в установившихся режимах. Инвариантность и ковариантность вход-выходных отображений в линейных системах управления, условия и способы их реализации.

Виды переходных процессов в элементах и системах управления. Типовые внешние воздействия на систему, типовые начальные условия и типовые временные характеристики элементов и систем управления.

Способы определения переходных процессов в линейных системах. Определение переходной функции линейной системы по ее вещественной частотной характеристике. Прямые и косвенные оценки динамических свойств линейных систем и способы их определения.

Основные этапы синтеза САУ. Выбор принципов управления и алгоритмов управляющих устройств. Типовые регуляторы и корректирующие устройства, их применение в САУ.

Темы лекций:

- 10. Статические режимы в линейных системах управления. Способы определения астатизма в линейных системах. Установившиеся динамические режимы в линейных элементах и системах управления и способы их анализа.
- 11. Методы повышения точности линейных САУ в установившихся режимах. Инвариантность и ковариантность вход-выходных отображений в линейных системах управления, условия и способы их реализации. Виды переходных процессов в элементах и системах управления.
- 12. Способы определения переходных процессов в линейных системах. Прямые и косвенные оценки динамических свойств линейных систем и способы их определения. Основные этапы синтеза САУ. Выбор принципов управления и алгоритмов управляющих устройств. Типовые регуляторы и корректирующие устройства, их применение в САУ.

Темы практических занятий:

- 1. Синтез систем автоматического управления по логарифмическим частотным характеристикам.
- 2. Модальный синтез систем управления.
- 3. Цифровые системы автоматического управления.
- 4. Нелинейные системы автоматического управления.

Названия лабораторных работ:

- 7. Анализ качества переходных процессов в линейных САУ.
- 8. Коррекция статических и динамических свойств САУ.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

1. Ким, Д.П. Теория автоматического управления: учебник и практикум для академического бакалавриата / Д.П. Ким; Московский государственный университет информационных технологий, радиотехники и электроники (МИРЭА, МГУПИ). – Москва: Юрайт, 2015. –

- Бакалавр. Академический URL: https://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-92.pdf (дата обращения: 19.03.2019). Режим доступа: из корпоративной сети ТПУ. Текст: электронный.
- 2. Малышенко, А.М. Сборник тестовых задач по теории автоматического управления: учебное пособие / А.М. Малышенко, О. С. Вадутов; Национальный исследовательский Томский политехнический университет (ТПУ). 2-е изд., перераб. Томск: Изд-во ТПУ, 2013. URL: http://www.lib.tpu.ru/fulltext2/m/2015/m066.pdf (дата обращения: 19.04.2019). Режим доступа: из корпоративной сети ТПУ. Текст: электронный.

Дополнительная литература:

- Малышенко, А.М. Математические основы теории систем: учебник для вузов / А.М. Малышенко; Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2008. URL: https://www.lib.tpu.ru/fulltext2/m/2010/m207.pdf (дата обращения: 21.04.2019). Режим доступа: из корпоративной сети ТПУ. Текст: электронный.
- 2. Теория автоматического управления: учебник для вузов / С.Е. Душин, Н.С. Зотов, Д.Х. Имаев [и др.]; под ред. В.Б. Яковлева. 3-е изд., стер. Москва: Высшая школа, 2009. 567 с.: ил. Текст : непосредственный.
- 3. Гайдук, А.Р. Теория автоматического управления в примерах и задачах с решениями в МАТLAB: учебное пособие / А.Р. Гайдук, В. Е. Беляев, Т.А. Пьявченко. 5-е изд., испр. и доп. Санкт-Петербург: Лань, 2019. 464 с. ISBN 978-5-8114-4200-3. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/125741 (дата обращения: 21.04.2019). Режим доступа: для авториз. пользователей.
- 4. Певзнер, Л.Д. Лабораторный практикум по дисциплине "Теория автоматического управления": учебное пособие / Л.Д. Певзнер, В.В. Дмитриева. Москва : Горная книга, 2010. 125 с. ISBN 978-5-7418-0631-9. Текст : электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/3478 (дата обращения: 21.04.2019). Режим доступа: для авториз. пользователей.

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. [Электронный ресурс] Электронная библиотечная система «Лань». Режим доступа: URL. https://e.lanbook.com/
- 2. [Электронный ресурс] Электронная библиотечная система «Консультант студента» Режим доступа: URL. http://www.studentlibrary.ru/
- 3. [Электронный ресурс] Электронная библиотечная система «Юрайт» Режим доступа: URL. http://www.studentlibrary.ru/
- 4. [Электронный ресурс] Электронная библиотечная система «Znanium» Режим доступа: URL. http://znanium.com/

Профессиональные Базы данных:

1. Научная электронная библиотека eLIBRARY.RU – https://elibrary.ru

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

1. Microsoft Office 2007 Standard Russian Academic; Microsoft Office 2013 Standard Russian Academic:

- 2. Document Foundation LibreOffice;
- 3. Cisco Webex Meetings
- 4. Zoom (Zoom Video Communications, Inc.)
- 5. MatLab
- 6. PEMOC
- 7. CLASSiC

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	нческих и лаоораторных занятии. Наименование специальных помещений	Наименование оборудования
1	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634028, Томская область, г. Томск, Ленина проспект, д. 2 (Учебный корпус №10), аудитория 106	Комплект учебной мебели на 15 посадочных мест;Тумба стационарная - 2 шт.; Информационный стенд № 1 - DKC "Алюминиевые кабельные каналы" - 1 шт.;Стенд № 2 "Клеммное обеспечение автоматизированных систем" - 1 шт.;Стенд № 4 "Коммутационная модульная аппаратура (ЕКF electronica) - 1 шт.;Источник питания NES-100-12 - 1 шт.;Стенд № 5 "Силовое оборудование и кнопки" - 1 шт.;Стенд № 6 "Металлокорпуса для электрощитов" - 1 шт.;Специализированный учебнонаучный комплекс интегрированных компьютерных систем - 1 шт.;Стенд № 3 "Силовые автоматические выключатели (ЕКF) - 1 шт.; Компьютер - 9 шт.
2	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634028, Томская область, г. Томск, Ленина проспект, д. 2 (Учебный корпус №10), аудитория 415	Доска аудиторная настенная - 1 шт.;Шкаф для одежды - 1 шт.;Шкаф для одежды - 1 шт.;Шкаф для документов - 4 шт.;Тумба подкатная - 5 шт.;Стол лабораторный - 5 шт.;Комплект учебной мебели на 34 посадочных мест; Макет космического аппарата ГЛОНАСС-К в масштабе 1:10 - 1 шт.;Макет космического аппарата ЛУЧ в масштабе 1:10 - 1 шт.;Макет космического аппарата МОЛНИЯ в масштабе 1:10 - 1 шт.; Компьютер - 1 шт.; Проектор - 1 шт.;

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 15.03.04 Автоматизация технологических процессов и производств. Специализация «Программно- технические комплексы управления производственными процессами» (приема 2020 г., очная форма обучения).

Разработчик(и):

r uspuoor mk(n).		
Должность	ФИО	
Профессор	Малышенко А.М.	

Программа одобрена на заседании выпускающего Отделения автоматизации и робототехники (протокол N 4a от «01» сентября 2020 г.).

Рук. Отделения ОАР Доцент, к.т.н

