ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2020 г.

ФОРМА ОБУЧЕНИЯ очная

	Математика 3				
Направление подготовки/ специальность	15.03.0	1 Машиностр	оение		
Образовательная программа (направленность (профиль))	Машиі	ностроение			
Специализация			окоэффе	ктивные технологии в автоматизированном машиностроительном	
N	произв				
Уровень образования	высшее	е образование -	оакалавр		
Курс	2	семестр	3		
Трудоемкость в кредитах	6				
(зачетных единицах)					
	i				
Заведующий кафедрой -				Трифонов А.Ю.	
руководитель отделения на					
правах кафедры		0			
Руководитель ООП		A THE		Ефременков Е.А.	
Преподаватель		X		Зальмеж В.Ф.	

1. Роль дисциплины «Математика 3» в формировании компетенций выпускника:

Элемент образовательно	Семестр			Составляющие результатов освоения (дескрипторы компетенции)		
й программы (дисциплина, практика, ГИА)		Код компетенции	Наименование компетенции	Код	Наименование	
	3	УК(У)-1 ОПК(У)-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач умеет использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования	УК(У)-1.31	Знает законы естественных наук и математические методы теоретического характера	
				УК(У)-1.У1	Умеет решать задачи теоретического и прикладного характера	
Математика 3				УК(У)-1.В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера	
				ОПК(У)-1.33	Знает основные определения и понятия теории дифференциальных уравнений, рядов, функции комплексного переменного и операционного исчисления	
				ОПК(У)-1.У2	Умеет решать обыкновенные дифференциальные уравнения и их системы, применять аппарат гармонического и комплексного анализа при решении стандартных задач	
			последования	ОПК(У)-1.В3	Владеет математическим аппаратом комплексного и операционного исчисления, дифференциальными уравнениями и рядами для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач	

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине		Наименование раздела дисциплины	Методы оценивания
Код	Наименование	контролируемой		(оценочные мероприятия)
		компетенции		
		(или ее части)		
РД 1	Владеет	УК(У)-1	1. Обыкновенные дифференциальные	Контрольная
	методами решения обыкновенных дифференциальных		уравнения первого порядка	работа
	уравнений 1-го и высшего порядков и систем дифференциальных уравнений;		2. Обыкновенные дифференциальные	ИДЗ.
	методами исследования сходимости рядов, разложения		уравнения высших порядков и системы	Тестирование –

	функций в степенные и тригонометрические ряды; методами дифференциального и интегрального исчисления функций комплексного переменного; основными приложениями теории вычетов; методами операционного исчисления решения обыкновенных дифференциальных уравнений и их систем		обыкновенных дифференциальных уравнений 3. Числовые ряды 4. Функциональные ряды 5. Ряды Фурье 7. Ряды в комплексной области 8. Теория вычетов и её приложения 9.Преобразование Лапласа. Операционный метод решения дифференциальных уравнений	независимый контроль ЦОКО
РД 2	Умеет определять тип, находить общее и частное решение дифференциальных уравнений и систем линейных дифференциальных уравнений с постоянными коэффициентами; исследовать на сходимость числовые ряды; находить интервалы сходимости степенных рядов; разлагать функции в ряд Тейлора и Фурье; выполнять действия с комплексными числами и функциями; дифференцировать и интегрировать функции комплексного переменного; разлагать функции в ряд Лорана; применять теорию вычетов для нахождения интегралов; находить изображение по оригиналу и оригинал по изображению; решать задачу Коши для дифференциальных уравнений и систем с помощью операционного исчисления	ОПК(У)-1	1. Обыкновенные дифференциальные уравнения первого порядка 2. Обыкновенные дифференциальные уравнения высших порядков и системы обыкновенных дифференциальных уравнений 3. Числовые ряды 4. Функциональные ряды 5. Ряды Фурье 7. Ряды в комплексной области 8. Теория вычетов и её приложения 9.Преобразование Лапласа. Операционный метод решения дифференциальных уравнений	Контрольная работа ИДЗ. Тестирование – независимый контроль ЦОКО
РД 3	Знает классификацию дифференциальных уравнений, основные методы решения дифференциальных уравнений первого и высших порядков и систем дифференциальных уравнений; основные понятия теории числовых и функциональных рядов; ряды Тейлора, Маклорена, Фурье; понятия комплексных чисел, основных функций комплексного переменного и их свойства; дифференцирование и интегрирование функций комплексного переменного;	УК(У)-1	1. Обыкновенные дифференциальные уравнения первого порядка 2. Обыкновенные дифференциальные уравнения высших порядков и системы обыкновенных дифференциальных уравнений 3. Числовые ряды 4. Функциональные ряды	Контрольная работа ИДЗ. Тестирование – независимый контроль ЦОКО

понятия ряда Лорана, особых точек, вычетов; понятие	5. Ряды Фурье
преобразования Лапласа и его основные свойства; основные	7. Ряды в комплексной области
приложения операционного исчисления	8. Теория вычетов и её приложения
	9.Преобразование Лапласа. Операционный
	метод решения дифференциальных
	уравнений

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

выпол	⁄ ₆ інения	Экзамен, балл	Соответствие традиционной	Определение оценки	
зада	ний	043131	оценке		

экзамена			
90%÷100%	18 ÷ 20	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом
			практической деятельности, необходимые результаты обучения сформированы, их качество оценено
			количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности,
			необходимые результаты обучения сформированы, качество ни одного из них не оценено
			минимальным количеством баллов
55% - 69%	11 ÷ 13	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической
			деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено
			минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Контрольн	
	ая работа	Вариант № 1
		Контрольная работа по теме «Дифференциальные уравнения 1 –го порядка»
		1. Определить тип и найти общие решения данных уравнений:
		1. $(y + y \ln x)dx - (x - xy)dy = 0$.
		2. $y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}$.
		3. $(xy^2 + \frac{x}{y^2})dx + (x^2y - \frac{x^2}{y^3})dy = 0.$
		2. Найти частные решения уравнений:
		4. $xy' - y = x \operatorname{tg}\left(\frac{y}{x}\right), y(1) = 1.$

Оценочн мероприя	
	5. $e^{y}dx = (2y - xe^{y})dy$, $y(-1) = 0$.
	Контрольная работа по теме «Дифференциальные уравнения высшего порядка и системы ДУ»
	l) Определить тип и найти общие решения данных уравнений:
	1) y'' = y' + x.
	2) $y'' - 2y' + y = \frac{e^x}{x^2}$.
	II) Решить задачу Коши:
	1) $yy'' + (y')^2 = 0$, $y(1) = 1$, $y'(1) = 1$.
	2) $y'' - y' = e^{-x} + 2x$. $y(0) = 1, y'(0) = 1$.
	3) $\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = -x. \end{cases} x(0) = 1; \ y(0) = -1.$
	<u>Числовые и функциональные ряды</u>
	I. Исследовать на сходимость ряды:
	$1.\sum_{n=1}^{\infty} \frac{1}{n+1-\cos^2 na}, 2.\sum_{n=1}^{\infty} \frac{(n+1)^2}{(n+2)^2 3^n}, 3.\sum_{n=1}^{\infty} \frac{n!(n+1)!}{(2n)!},$

· · · · · · · · · · · · · · · · · · ·	ценочные	Примеры типовых контрольных заданий
		4. $\sum_{n=1}^{\infty} \left(\frac{n-1}{3n+2}\right)^n$, 5. $\sum_{n=1}^{\infty} \frac{(-1)^n n^4}{n^5+5}$. II. Найти интервал сходимости ряда, исследовать ряд на концах интервала: 1) $\sum_{n=1}^{\infty} \frac{(0.1)^n x^{2n}}{n}$ 2) $\sum_{n=1}^{\infty} \frac{3^{2n} (n+3)^2}{(x+5)^n}$
		III. Разложить в ряд Тейлора, в окрестности точки x_0 , функцию $f(x)$: 1) $y = \ln x$, $x_0 = 1$. 2) $y = x^2 \cdot \sin 5x$, $x_0 = 0$
		3) $y = \frac{7}{1+x-12x^2}$ $x_0 = 0$, 4) $y = \frac{1}{\sqrt[7]{x}}$ $x_0 = -1$.
		Контрольная работа №3 по теме «Функции комплексного переменного» ВАРИАНТ №1
		IV. а) Найти все значения корня: $\sqrt[3]{-2}$. Результат вычислений представить в алгебраической форме.
		б) Представить в алгебраической форме: $(-1-i)^{4i}$.
		V. а) Найти коэффициент растяжения и угол поворота в точке $z_0 = 1 - i$ при отображении $\omega = z^2$. б) Проверить функцию на аналитичность: $\omega = (z^*)^2 \cdot z$.
		VI. Найти аналитическую функцию $f(z) = U + iV$ по известной действительной части и значению $f(z_0)$: $U(x,y) = x^3 - 3xy^2; f(i) = -i.$
	,	VII. Вычислить интеграл: $\int z^2 {\rm Im} z dz$, где $ L$ - отрезок прямой от точки $ z_1 = 0$, до точки $ z_2 = 1 - 2i$.

Оценочные мероприятия	Примеры типовых контрольных заданий
	VIII. Вычислить интеграл: $\int\limits_{L} \frac{dz}{z^3 (z-2i)^2} , \mathrm{гдe} L: \big z-2i\big = 1 .$
	Контрольная работа №3 по теме «Комплексные ряды. Вычеты»
	ВАРИАНТ №1
	1. Разложить функцию $f(z) = \frac{z}{(z-1)(z^2+2z-3)}$ в ряд Лорана с центром в $z_0 = 1$ в кольце $ z-1 > 4$.
	2. Найти и построить область сходимости ряда: $\sum_{n=1}^{\infty} \frac{\cos(in)}{(z+i+1)^n} + \sum_{n=0}^{\infty} \frac{(z+i+1)^n}{(2n+i)(4+3i)^n}.$
	3. Вычислить следующие интегралы:
	A) $\oint_{ z-2 =4} \frac{zdz}{e^z + e^2}$ B) $\int_{ z =2} \frac{exp(1/z) + 1}{z} dz$ C) $\int_{-\infty}^{\infty} \frac{\cos \pi x dx}{x^2 + 4x + 5}$
	Контрольная работа №3 по теме «Операционное исчисление.» ВАРИАНТ №1
	1. Решить дифференциальное уравнение $x'+3x=e^{-2t}$, если $x(0)=0$. 2. С помощью формулы Дюамеля найти решение уравнения $x''= \operatorname{arctg} t$,
	удовлетворяющее начальным условиям $x(0) = x'(0) = 0$.
	3. Решить систему уравнений $\begin{cases} x'+4y+2x=4t+1; \\ y'+x-y=\frac{3}{2}t^2 \end{cases} x(0)=y(0)=0.$

	Оценочные мероприятия	Примеры типовых контрольных заданий
2.	ИДЗ.	Пример варианта индивидуальных заданий.

Оценочные мероприятия	Примеры типовых контрольных заданий
жероприятия	Дифференциальные уравнения и системы
	1. Найти общие решения уравнений первого порядка
	1) $y' - \frac{y}{x} = \frac{1}{\sin(y/x)}$. 2) $y' + y \cos x = \cos x$. 3) $y' + y = x\sqrt{y}$. 4) $\frac{e^{-x^2}dy}{x} + \frac{dx}{\cos^2 y} = 0$. 5) $(3x^2 + 6xy^2) dx + (6x^2y + 4y^3) dy = 0$. 6) $2(4y^2 + 4y - x) y' = 1$.
	2. Найти частные решения уравнений
	1) $\sqrt{y^2 + 1} dx = x y dy$, $y(1) = 0$. 2) $(x - y) dx + (x + y) dy = 0$, $y(1) = 1$. 3) $xy' - 2y = 2x^4$, $y(1) = 0$. 4) $y' + xy = (1 + x) e^{-x} \cdot y^2$, $y(0) = 1$.
	3. Найти решения уравнений высшего порядка
	1) $2xy'y'' = y'^2 - 1$. 2) $y'' = y' e^y$, $y(0) = 0$, $y'(0) = 1$. 3) $y'' \cos^2 x = 1$. 4) $y'' + y' = \cos x$.
	5) $y'' + y = \frac{2 + \cos^3 x}{\cos^2 x}$. 6) $y'' + 2y' + y = x e^x + \frac{1}{x e^x}$.
	7) $y'' + 2y' + y = (12x - 10) e^{-x}$. 8) $y'' - 3y' = 2\sin 3x - \cos 3x$. 9) $y''' - 4y'' + 5y' - 2y = (16 - 12x)e^{-x}$. 10) $y''' + 3y'' + 2y' = 1 - x^2$.
	11) $x^2 y'' + xy' + y = 0$, 12) $x^2 y'' - 6y = 12 \ln x$.
	13) $\ddot{x} + 2\dot{x} + 5x = -8e^{-t}\sin 2t$, $x(0) = 2$, $\dot{x}(0) = 6$. 14) $\ddot{x} - 6\dot{x} + 25x = 9\sin 4t - 24\cos 4t$, $x(0) = 2$, $\dot{x}(0) = -2$.
	4. Найти решения линейных систем
	1) $\begin{cases} \dot{x} = -8x + 4y \\ \dot{y} = 3x - 4y \end{cases}$ 2) $\begin{cases} \dot{x} = 6x + 5y \\ \dot{y} = -x + 2y \end{cases}$ $x(0) = 0$ $y(0) = 1$.
	3) $\begin{cases} \dot{x} = 5x - 2y \\ \dot{y} = 2x + y \end{cases}$ 4) $\begin{cases} \dot{x} = 6x + 4y + 2t \\ \dot{y} = -x + 10y - 1 \end{cases}$.

Эценочные ероприятия	Примеры типовых контрольных заданий	
- p	Числовые и функциональные ряды	
	1. Исследовать на сходимость знакоположительные ряды:	
	1) $\sum_{n=1}^{\infty} \frac{(2n-1)^2}{(5n^2+1)\cdot\sqrt{n}}$ 2) $\sum_{n=1}^{\infty} tg^5 \frac{3}{\sqrt{2n+7}}$	
	3) $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n}$ 4) $\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n \cdot \frac{1}{5^n}$	
	2. Исследовать на сходимость знакочередующиеся ряды:	
	1) $\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{2n}$ 2) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{5n^2 + 3n - 1}}{7n^3 + 4}$	
	3) $\sum_{n=1}^{\infty} (-1)^n \frac{6^n (n^2 - 1)}{n!}$ 4) $\sum_{n=1}^{\infty} (-1)^n \ln^{2n} \left(1 + \frac{3}{n^2} \right)$	
	3. Найти интервалы сходимости степенных рядов:	
	1) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n+2}}{n+1} (x-8)^n$ 2) $\sum_{n=1}^{\infty} (-1)^n n 2^{2n} x^n$	
	4. Разложить в ряд Тейлора по степеням $(x - x_0)$ функции:	
	1) $y = \frac{1}{x^2 + 4x + 7}$, $x_0 = -2$ 2) $y = (1+x)e^{-2x}$, $x_0 = 0$	
	3) $y = \frac{\operatorname{arct} gx^3}{5x^3}$ $x_0 = 0$, 4) $y = \ln(x+2)^3$ $x_0 = 1$.	
	5. Используя разложение подынтегральной функции в степенной ряд, вычислить интегралы с точностью не менее 0,01:	

Оценочные мероприятия	Примеры типовых контрольных заданий
	1) $\int_{0}^{1/8} \sqrt{1-x^3} dx$ 2) $\int_{0}^{1} \sin x^3 dx$
	<u>Комплексные числа и функции</u>
	1. Даны числа $z_1 = -2\sqrt{3} + 2i$, $z_2 = 2 - 6i$.
	Выполнить действия в алгебраической форме:
	1) $3z_1 + 5z_2$, 2) $z_1 \cdot z_2$, 3) $\frac{z_1}{z_2}$.
	2. Даны числа $z_1 = 3\sqrt{3} + 3i$, $z_2 = -1 + 4i$, $z_3 = 2 - 4i$.
	Построить числа на комплексной плоскости и перевести в тригонометрическую и показательную форму записи. Выполнить указанные действия в показательной форме, результаты представить в алгебраической и в показательной форме.
	1) $(z_2)^6$, 2) $\sqrt[3]{z_1}$, 3) $\frac{z_2 \cdot z_3}{z_2 + z_3}$.
	3. Даны числа $z_1 = -1 - i$, $z_2 = 2 + 3i$.
	Вычислить значения функций:
	1) $\ln z_1$, 2) e^{z_2} , 3) $\cos z_2$.
	Результаты представить в алгебраической форме. 4. Определить и построить на комплексной плоскости семейства линий, заданных уравнениями:
	1) $ z = \frac{C}{\arg z}$, 2) $ z = C\sin(\arg z)$.

ценочные роприятия	Примеры типовых контрольных заданий
	5. Найти модуль и аргумент производной функции $w = f(z)$ в точке $z = z_0$:
	$f(z) = (1+4i)e^{-4iz}, z_0 = 1+i$
	6. Вычислить интегралы:
	1) $\int_{(L)} \frac{dz}{\sqrt{z}}$, $z \partial e L: \{ z = \sqrt{3}, \operatorname{Re} z > 0 \};$
	2) $\int_{(L)} (\operatorname{Re} z + \operatorname{Im} z) dz$, где L : отрезок $[0, 1+2i]$.
	7. Вычислить, используя интегральную формулу Коши:
	$ \iint_{(L)} \frac{z^2 - z}{z^2 (z+1)^2} dz, \text{ide } L: \begin{cases} 1 & z = 0,5; \\ 2 & z+1 = 1; \\ 3 & z = 2. \end{cases} $
	Операционный метод 1. Найти изображения следующих функций:
	1) $f(t) = \cos^4 t$. 2) $f(t) = \frac{e^{at} - e^{bt}}{t}$.
	2. Найти оригиналы функций по заданным изображениям:
	1) $F(p) = \frac{1}{(p+1)^2(p+3)}$. 2) $F(p) = \frac{p^2}{(p^2+4)(p^2+9)}$.
	3. Найти решение задачи Коши операционным методом:

	Оценочные мероприятия	Примеры типовых контрольных заданий
	мероприятия	1) $2x'' + 5x' = 2\cos t$, $x(0) = 0$, $x'(0) = 0$.
		2) $x'' + 6x = t^2$, $x(0) = 0$, $x'(0) = 0$.
		3) $x'' - 4x' + 3x = 5e^{4t}$, $x(0) = 0$, $x'(0) = 0$.
		4. Решить уравнения, используя формулу Дюамеля:
		$x"+16x = \begin{cases} 0, & t < 1, \\ -2, & 1 \le t \le 2, \\ 1, & 2 < t \le 3, \\ 0, & t > 3, \end{cases} x(0) = 0, x'(0) = 0.$
		5. Найти решение систем операционным методом:
		1) $\begin{cases} x' = 6x + 2y & x(0) = -1, \\ y' = 2x + 9y & y(0) = 0. \end{cases}$ 2) $\begin{cases} x' = 4x - 5y & x(0) = 3, \\ y' = x + 2y & y(0) = -1. \end{cases}$
4.	Тестирова ние – независим ый контроль ЦОКО (РТ5 и РТ6)	Вопросы: 1. Даны комплексные числа $z_1 = 1 + 2i$ и $z_2 = 3i$ (здесь $\overline{z_1}$ и $\overline{z_2}$ - комплексно сопряженные числа) Установите соответствие действие над числами: 1. $2z_1 + 3z_2$ 2. $\overline{z_1} \cdot \overline{z_2}$ 3. $\overline{z_1} \cdot \overline{z_2}$ 4. $5 \cdot \frac{\overline{z_2}}{z_1}$ 5. $(z_1)^2$ результат действия над числами 1. $3i - 6$

Оценочные мероприятия	Примеры типовых контрольных за	аданий
	2. $4i-3$ 3. $2-5i$ 4. $-6-3i$ 5. $6+3i$ 2. Даны комплексные числа $z_1=2e^{i\frac{\pi}{4}}$ $z_2=7e^{-i\frac{5\pi}{6}}$ а) Главное значение аргумента произведения $z_1\cdot z_2$ равно б) Главное значение аргумента отношения $\frac{z_1}{z_2}$ равно (Ответы дать в градусах)	
	$3.$ Установите соответствие Функция $1.2 \exp\left(1+i\frac{5\pi}{6}\right)$ $2.2 \exp\left(1+i\frac{2\pi}{3}\right)$ $3.2 \exp\left(1-i\frac{\pi}{6}\right)$ $4.2 \exp\left(1+i\frac{\pi}{3}\right)$	значение функции 1. $e(1+\sqrt{3} \cdot i)$ 2. $e(i-\sqrt{3})$ 3. $e(\sqrt{3} \cdot i-1)$ 4. $e(\sqrt{3}-i)$ 5.
	4. Найти коэффициент растяжения и угол поворота в точке $z_0 = i$	Ввести два числа

Оценочные мероприяти		цаний
	при отображении $f(z) = z^4 + \ln z$ При вводе значения k значения корней квадратных округлять до десятых. Значения угла поворота вводить в градусах	$k = \alpha =$
	5.	Ввести два числа
	Вычислить интеграл $\int\limits_{(L)}({\rm Re}z+Jmz)dz$ (L)— прямая линия, $z_1=0$ $z_2=1+2i$ содиняющая точки и	$ \begin{array}{c} x = \\ y = \end{array} $
	Ответ получить в виде комплексного числа $x+iy$. Дробные значения вводить в виде несократимой дроби $4/9, -7/2$	
	6. Вычислить интеграл, используя формулу Коши	1. $-\pi/2$
	$ \oint_{ z+2i =2} \frac{dz}{z^2+4}. $	2. $-\pi$ 3. $\pi/2$ 4. $-\pi i/2$ 5. $-1/2$
	Контур обходится в положительном направлении. 7.	

· ·	еночные оприятия	Пр	оимеры типовых контрольных заданий
		Выберите все функции, которые могут служить оригиналами	A. $\frac{\ln t}{t}$ B. $t^{5} + 5e^{-4t}$ C. $arctgt$ D. $\frac{\cos t}{t^{2}}$ E. $ctgt$ F. $\frac{t^{2}}{e^{t}}$
		8. Установите соответствие оригиналов и изображений А. $f(t) = 2e^{-3t} + 4\cos 2t$ В. $f(t) = 3e^{3t} + 4\sin 2t$ С. $f(t) = 2e^{-3t} + 4sh2t$ D. $f(t) = 4e^{3t} - 4ch2t$	1. $F(p) = \frac{2}{p+3} + \frac{4p}{p^2 + 4}$ 2. $F(p) = \frac{2}{p+3} + \frac{8}{p^2 - 4}$ 3. $F(p) = \frac{4}{p-3} - \frac{4p}{p^2 - 4}$ 4. $F(p) = \frac{3}{p-3} + \frac{8}{p^2 + 4}$

Оценочные мероприятия	Примеры типовых контрольных заданий
	Выберите условно сходящийся ряд, используя признак Лейбница $1. \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n^2}{(3n+2)^2}$ $2. \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{(n+1)!}$ $3. \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{3n+2}$ $4. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n+2}$
	10. Разложить функцию $f(x) = \frac{1}{(1+x)(x-2)}$ в ряд Маклорена. 1. $f(x) = \frac{1}{2}x - \frac{1}{3}x^2 + \frac{1}{4}x^3 +$ 2. $f(x) = \frac{1}{2} + \frac{1}{4}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 +$ 3. $f(x) = \frac{1}{2} + \frac{1}{4}x - \frac{3}{8}x^2 + \frac{5}{16}x^3 +$
	11. Интервал (1;3) является интервалом сходимости рядов 1. $\sum_{n=1}^{\infty} n(x-2)^n$ 2. $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n}$

Оценочные мероприятия	Примеры типовых контрольных заданий
	3. $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ 4. $\sum_{n=1}^{\infty} (x+1)^n$
	12. Установите соответствие функция существенно особая точка
	$f(z) = \frac{e^z}{z^2 (1-z)^2}$ $(1+z)$
	$f(z) = \frac{\ln\left(\frac{1+z}{z}\right)}{z^2(z+4i)}$ $f(z) = \sin\left(\frac{z+1+4i}{z+4i}\right)$ $f(z) = \frac{e^{\frac{1}{z-i}}}{(z^2+1)(z-1)}$ $z=0$ $z=-4i$
	$f(z) = \sin\left(\frac{z+1+4i}{z+4i}\right)$ $= \frac{1}{z-i}$ z=-4i
	$f(z) = \frac{e^{z-z}}{(z^2+1)(z-1)}$ z=i
	z=1 z=4i z=-i
	13

Оценочные мероприятия	Примеры типовых контрольных заданий	
	$a_0 + a_1(z+i) + a_2(z+i)^2 + a_3(z+i)^3 +$ Укажите коэффициенты разложения a_0 ; a_1 ; a_2 ; a_3 (дробные ответы вводите обыкновенной несократимой дробью без пробелов, если коэффициент мнимый, i – первый множитель)	
	16. Решить задачу Коши операционным методом $x''+3x'=e^{-3t}$, $x(0)=0$, $x'(0)=-1$ Ответ: $x(t)=\frac{2}{9}(e^{-3t}-1)-\frac{t}{3}\cdot e^{-3t}$ Ответ:	
	Выберите сходящийся ряд, используя признак сравнения $1. \ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$	
	2. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} \cdot \sqrt{n+2}}$ 3. $\sum_{n=1}^{\infty} \frac{1}{(n^2+3) \cdot \sqrt{n+2}}$	
	$ \begin{array}{c} \sum_{n=1}^{\infty} (n^2 + 3) \cdot \sqrt{n+2} \\ 4. \sum_{n=1}^{\infty} \frac{1}{3n+5} \end{array} $	
	16.Из уравнений высшего порядка выбрать уравнения, допускающие понижение порядка с помощью замены $y' = p(y), y'' = p'_y \cdot p$	
	1. $y'' + \frac{2}{1 - y}(y')^2 = 0$ 2. $2yy'' - 2yy' \ln y = (y')^2$	
	3. $y'' + 2y' + y = e^{-x}$ 4. $y''' \sin^4 x = \sin 2x$	

	Оценочные мероприятия	Примеры типовых контрольных заданий		
	жероприятия	5. $y"+25y = \frac{1}{\sin^3 5x}$ 17. Частное решение y * неоднородного линейного уравнения $y"-3y'+2y = x \cdot e^x$ имеет вид 1. $y*=(Ax+B) \cdot e^x \cdot x^2$ 2. $y*=(Ax+B) \cdot e^x \cdot x$ 3. $y*=(Ax+B) \cdot e^{2x} \cdot x^2$ 4. $y*=Ax \cdot e^x$		
5.	Экзамен	Примеры заданий на экзамен		
		Экзаменационный билет 1		
		Семестр 3		
		1. Степенные ряды. Теорема Абеля. Нахождение интервала сходимости степенного ряда.		
		2. Преобразование Лапласа. Оригиналы и изображения. Основные свойства операционного метода		
		1. Решить задачу Коши $y' - \frac{y}{x} = 4x^4$, $y(1) = 1$ 2. Решить уравнение $(1+x^2)y'' + y' = 0$		
		2. Решить уравнение $(1+x^2)y''+y'=0$		
		3. Исследовать на сходимость числовой ряд		

Оценочные мероприятия	Пр	оимеры типовых контрольных заданий
	$\sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n+5)\ln(2n+5)}.$	
	4. $\sum_{n=1}^{\infty} (-1)^n \frac{9^n}{5^n \cdot (x-2)^n}.$	Определить интервал сходимости функционального ряда
	5. z степеням z .	Разложить в ряд Лорана функцию $f(z) = (z-3)^2 e^{-1/z}$ по
	6.	Вычислить $\ln(-\sqrt{3}+i)^2$
	7. $z_0 = 2i - 3 \text{при отображении} \ f(z) =$	Найти коэффициент растяжения плоскости $z=x+iy$ в точке $(7i+2)\ln(2z)$
	8. $\label{eq:fz} \text{отображении} f(z) = \frac{2z+3i}{iz+4}$	Найти угол поворота плоскости $z=x+iy$ в точке $z_0=1$ при
	9.	Изобразить область, заданную неравенствами
		$5\pi / 6 < \arg z \le 5\pi / 4.$
	10. Вычислить интеграл	-dz
	11. Найти изображение для функции	$f(t) = t \cdot \operatorname{ch} 3t \cdot \sin 2t$
	Теоретические вопросы для подго	отовки к экзамену

Оценочные мероприятия	Примеры типовых контрольных заданий
мероприятия	 Дифференциальные уравнения и системы Какие обыкновенные дифференциальные уравнения первого порядка называются уравнениями с разделёнными и с разделяющимися переменными? Как они решаются? Какие обыкновенные дифференциальные уравнения первого порядка называются однородными? Как они решаются? Какие обыкновенные дифференциальные уравнения первого порядка называются линейными? Перечислите методы решения Как решается уравнение Бернулли? Какие обыкновенные дифференциальные уравнения первого порядка называются уравнениями в полных дифференциалах? Как они решаются? Что такое задача Коши для обыкновенных дифференциальных уравнений высших порядков? Когда она имеет единственное решение? Перечислите основные типы обыкновенных дифференциальных уравнений высших порядков, допускающих понижение порядка. Дайте определение линейного дифференциальные уравнения п - го порядка. Перечислите основные свойства частных решений однородного уравнения. Сформулируйте теоремы о вронскиане. Сформулируйте теоремы о вронскиане. Сформулируйте теоремы о тыскания частного решения неоднородного линейного дифференциальные уравнения? Схема построения фундаментальной системы решений однородного линейного дифференциальные уравнения с постоянными коэффициентами Перечислите методы отыскания частных решений неоднородного линейного дифференциальные уравнения с постоянными коэффициентами Дайте определение нормальной системы обыкновенных дифференциальных уравнений п-го порядка. Сформулируйте задачу Коши для такой системы. Изложите методы исключения и характеристического уравнения отыскания общего решения системы линейных однородных уравнений с постоянными кооффициентами.
	 Числовые и функциональные ряды. Ряды Фурье Понятие числового ряда, его суммы. Необходимый признак сходимости. Свойства сходящихся рядов. Сравнительный признак сходимости знакоположительных рядов. Эталонные ряды.

Оценочные	Примеры типовых контрольных заданий
мероприятия	 Признак Д'аламбера. Для каких видов числовых рядов он эффективен? Радикальный признак Копш. Для каких видов числовых рядов он применяется? Интегральный признак Копш. Для каких видов числовых рядов он применяется? Признак Лейбница сходимости знакочередующихся рядов. Как проводится оценка суммы и остатка такого ряда? Понятие абсолютной и условной сходимости. Понятие функционального ряда и области его сходимости. Равномерная и абсолютная сходимость? Свойства равномерно и абсолютно сходящихся рядов. Понятие степенного ряда. Теорема Абеля. Интервал и радиус сходимости степенного ряда. Способы нахождения интервалов сходимости. Ряды Тейлора и Маклорена для данной функции. Условия разложения функции в ряд Тейлора. Схема построения ряда Тейлора (Маклорена). Ряды Маклорена для некоторых элементарных функций, интервалы их сходимости. Использование готовых разложений для получения разложения в ряд Маклорена более сложных функций. Применение степенных рядов в приближенных вычислениях. Понятие тригонометрического ряда. Формулы Фурье для нахождения коэффициентов ряда (функция периодическая и заданная на интервале [−π; π]). Теорема Дирихле об условиях разложения функции в ряд Фурье. Формулы Фурье для случая разложения функции, заданной в произвольном интервале [−l; l]. Разложение в ряд Фурье непериодических функций.
	 Комплексные числа и функции. Теория вычетов Понятие комплексного числа, его действительной и мнимой части. Алгебраическая форма записи комплексного числа. Какие комплексные числа называются равными, комплексно - сопряженными? Арифметические действия над комплексными числами, записанными в алгебраической форме. Геометрическое представление комплексного числа, комплексная плоскость. Модуль и аргумент комплексного числа. Тринонометрическая и показательная форма записи комплексных чисел. Переход из одной формы записи комплексного числа к другой. Возведение в степень и извлечение корня из комплексного числа. Формулы Муавра.

Оценочные мероприятия	Примеры типовых контрольных заданий
	 Понятие функции комплексного переменного. Предел и непрерывность функции. Показательная, логарифмическая, тригонометрические, гиперболические и обратные тригонометрические функции комплексного переменного. Дифференцирование функции комплексного переменного. Условия Коши-Римана. Сопряженные гармонические функции. Понятие аналитической функции комплексного переменного в области. Необходимые и достаточные условия аналитичности. Геометрический смысл модуля и аргумента производной функции комплексного переменного. Понятие интеграла от функции комплексного переменного и его основные свойства. Вычисление интегралов. Интегральная теорема Коши. Интегральная формула Коши и ее следствия. Числовые и функциональные ряды с комплексными членами. Степенные ряды. Теорема Абеля. Ряд Тейлора. Теорема о разложении аналитической функции в ряд Тейлора. Ряды Лорана, определение. Теорема Лорана о разложении аналитической функции в кольце в ряд. Понятие аналитического продолжения. Особые точки и их классификация. Вычет функции в изолированной особой точке. Формулы для вычисления вычетов. Основная теорема о вычетах. Применение вычетов к вычислению определённых интегралов
	 Операционный метод Дайте определение преобразования Лапласа. Какая функция может служить оригиналом? Что называется изображением функции по Лаплассу? Запишите таблицу изображений наиболее часто используемых элементарных функций. Сформулируйте и запишите свойство линейности. Как оно используется для нахождения изображения по оригиналу и наоборот? Сформулируйте и запишите свойства дифференцирования изображения и оригинала. Как они используются для нахождения изображения по оригиналу и наоборот? Сформулируйте и запишите свойства интегрирования изображения и оригинала. Как они используются для нахождения изображения по оригиналу и наоборот? Сформулируйте и запишите свойства запаздывания и смещения. Как они используются для нахождения изображения по оригиналу и наоборот? Дайте понятие свертки функций. Как записывается изображение свертки? Как можно использовать формулу свертки для. нахождения изображения по оригиналу и наоборот?

Оценочные	Примеры типовых контрольных заданий
мероприятия	
	 Изложите схему нахождения частного решения линейных дифференциальных уравнений операционным методом. Изложите схему нахождения частного решения систем линейных дифференциальных уравнений операционным методом. Запишите и поясните формулу Дюамеля. Понятие функций Хависайда (η-функция) и Дирака (δ-функция).

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	В семестре студенты выполняют 5 контрольных работ, содержание которых охватывает все разделы
		дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы
		практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с
		рейтинг-планом дисциплины.
		Критерии оценки задания:
		Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в
		соответствие с рейтинг- планом, на долю верно выполненных заданий.
2.	ИДЗ	В семестре студенты выполняют 5 ИДЗ по всем разделам программы дисциплины. У каждого студента в
		группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе
		группы.
		ИДЗ размещены в электронном курсе по дисциплине.
		Решение каждого задания должно быть подробным, с включением промежуточных расчётов, рассуждений,
		пояснений, с указанием использованных методов и формул. Задание высылается отдельным файлом,
		указывается ФИО, группа.

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		Критерии оценивания
		Задание считается зачтенным, если выполнено более половины заданий
		Если задание не зачтено, работа возвращается студенту на доработку.
		Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку. Преподаватель может учесть исправления и добавить баллы к предыдущим
3.	Тестирование – независимый контроль ЦОКО	В семестре студенты проходят два рубежных тестирования (РТ5 и РТ6) во время конференц-недели в середине и конце текущего семестра согласно расписанию. Рубежное тестирование (РТ) проводится в компьютерной форме в on-line режиме. Продолжительность тестирования – 90 минут без перерыва. Отсчёт времени начинается с момента входа студента в Тест. Инструктаж, предшествующий тестированию, не входит в указанное время. Студент может закончить выполнение Теста до истечения отведённого времени. РТ нацелено на независимую объективную оценку знаний, умений и владений, полученных студентами за определенный промежуток обучения. Каждый вариант билета моделируется компьютером по заданным разделам химии и содержит 20 заданий. Студенты вносят ответы в компьютер, но все решения и пояснения проводят на бумаге. По окончании тестирования преподавателю выдается матрица ответов и суммарный рейтинг за тест. Обсуждение результатов тестирования проводится на консультации.
		Критерии оценки одного задания:
		 за каждое правильно выполненное задание выставляется 1 тестовый балл; за неправильно выполненное или невыполненное задание выставляется 0 баллов; для заданий с выбором нескольких правильных ответов, заданий на соответствие и установление последовательности предусмотрено частичное оценивание. Максимальный суммарный тестовый балл за каждое РТ составляет 15 баллов. За 2 недели до РТ студенты могут ознакомится с демонстрационным вариантом билета, который располагается на сайте http://exam.tpu.ru в разделе «Мероприятия», и может быть выполнен каждым студентом неограниченное число раз. Для студентов, не прошедших РТ в период проведения тестирования по уважительной причине, предусмотрена возможность тестирования в резервный день, который назначается сразу после конференцнедели.

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		При результате рубежного тестирования 6 баллов и менее, обучающимся предоставляется в период текущей промежуточной аттестации возможность повторно пройти РТ в резервный день, согласованный
		с Бюро расписаний ТПУ.
4.	Экзамен	Экзамен осуществляется в соответствии с Положением о проведении текущего контроля и
		промежуточной аттестации ТПУ На экзамене студенту выдаются билеты, включающие теоретические
		вопросы и практические задания. Преподаватель, проверив работу, в ходе устной беседы со студентом может
		задавать вопросы по самому билету, а также дополнительные вопросы по теории и практике. В итоге студент
		набирает итоговый балл за экзамен, максимально 20 баллов. Оценка за дисциплину формируется как итоговая
		за работу в семестре и экзамен в соответствие с принятой шкалой оценивания.
		Студенты, не сдавшие экзамен в сессионный период, могут пересдать его в периоды ликвидации
		задолженностей в соответствие с действующей процедурой.
		В соответствии с приказами от 25.07.2018 г. №58/од Об утверждении и введении в действие
		«Системы оценивания результатов обучения в Томском политехническом университете» и №59/од
		Об утверждении и введении в действие новой редакции «Положения о проведении текущего
		контроля и промежуточной аттестации в ТПУ» экзамен по физике проводится в устной форме.
		Студенту выдается экзаменационный билет, содержащий теоретические вопросы, качественные и
		количественные задачи. Каждый вопрос билета оцениваться баллом (всего по билету 20 баллов).
		Экзамен проходит в устной форме.
		Согласно шкалы оценивания результатов
		18-20 баллов (отлично) - всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы;
		14-17 баллов (хорошо) - достаточно полное понимание предмета, хорошие знания, умения и опыт практической
		деятельности, необходимые результаты обучения сформированы;
		11-13 баллов (удовлетворительно) - приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы;
		0-10 баллов (неудовлетворительно) - результаты обучения не соответствуют минимально достаточным требованиям.
		Результаты промежуточной аттестации оформляются ведомостью и вносятся в зачетную книжку
		обучающегося.