ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2020 г.

ФОРМА ОБУЧЕНИЯ ОЧНАЯ

Акту	альные проблемы науки в област	ги химических и биомедицинских технологий	
Направление подготовки	18.04.01 Химическая технологи	R	
Образовательная программа	Перспективные химические и б	биомедицинские технологии	
Специализация	Перспект	гивные химические и биомедицинские технологии	
Уровень образования	высшее образование - магистра	тура	
Курс	1 семестр 1		
Трудоемкость в кредитах		6	
(зачетных единицах)			
	n //		
Директор ИШХБМТ	Mus	М.Е. Трусова	
Руководитель ООП		А.Н. Пестряков	
Преподаватель	i offin	А.Н. Пестряков	
*0.21		С.В. Романенко	
	huse	К.С. Бразовский	

И.А. Хлусов

1. Роль дисциплины «Актуальные проблемы науки в области химических и биомедицинских технологий» в формировании компетенций выпускника:

Элемент образовательной		Код			Составляющие результатов освоения (дескрипторы компетенций)
программы (дисциплина, практика, ГИА)	Семестр	компетенции	Наименование компетенции	Код	Наименование
Актуальные проблемы науки в области химических и биомедицинских технологий	1	ПК(У)-2	Готовность к поиску, обработке, анализу и систематизации научнотехнической информации по теме исследования, выбору методик и средств решения задачи	ПК(У)-2. В1 ПК(У)-2. У1 ПК(У)-2. 31	Владеет способностью к поиску и систематизации научно-технической информации для решения научных проблем в области химической технологии Ориентируется в спектре современных проблем в области химической технологии Знает мировые достижения и тенденции инновационного развития в области химических и биомедицинских технологий и их отображение в современных информационно-аналитических системах

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Код контролируемой	Наименование раздела	Методы оценивания
Код	Наименование	компетенции (или ее	дисциплины	(оценочные мероприятия)
		части)		
РД1	Описывать полный спектр проблем в области современных	ПК(У)-2	Раздел 1. Энергетика	Защита индивидуального домашнего
	химических технологий		будущего	задания
			Раздел 2. «Зеленая» химия как	Семинар
			фундаментальная основа	Экзамен
			«зеленых» технологий	
РРД2	Описывать полный спектр проблем в области современных	ПК(У)-2	Раздел 3. Проблемы	Защита индивидуального домашнего
	биомедицинских технологий		экспериментальной и	задания
			клинической биомедицины	Семинар
			Раздел 4. Системная биология	Экзамен
РРД3	Искать, систематизировать и анализировать научную информацию	ПК(У)-2	Раздел 1. Энергетика	Защита индивидуального домашнего
	в области современных химических и биомедицинских технологий		будущего	задания
			Раздел 2. «Зеленая» химия как	Семинар
			фундаментальная основа	Экзамен
			«зеленых» технологий	
			Раздел 3. Проблемы	
			экспериментальной и	
			клинической биомедицины	
			Раздел 4. Системная биология	

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки
90%÷100%	$18 \div 20$	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности,
			необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	11 ÷ 13		Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Защита индивидуального	Индивидуальное домашнее задание выполняется в виде литературного обзора по каждому разделу дисциплины по
	домашнего задания	одной из тематик:
		Раздел 1.
		1. Использование ископаемых топлив в современном мире.
		2. Атомная энергетика.
		3. Гидроэнергетика.
		4. Возобновляемые виды энергии.
		5. Прогноз развития энергетики мира и России.
		Темы докладов
		6. Основные вехи в истории водородной энергетики
		7. Водород и его свойства
		8. Получение водорода. Сравнение различных методов производства водорода
		9. Проблемы хранения водорода
		10. Использование водорода
		11. Современное состояние исследований и разработок в области водородных энерготехнологий
		Раздел 2
		12 принципов «зеленой» химии.
		1. Prevent Waste
		2. Atom Economy
		3. Less Hazardous Synthesis
		4. Design Benign Chemicals
		5. Benign Solvents & Auxiliaries
		6. Design for Energy Efficiency
		7. Use of Renewable Feedstocks
		8. Reduce Derivatives
		9. Catalysis (vs. Stoichiometric)
		10. Design for Degradation
		11. Real-Time Analysis for Pollution Prevention
		12. Inherently Benign Chemistry for Accident Prevention
		Раздел 3
		1. Взаимосвязь "зеленой" химии и технологий с биомедициной.
		2. Роль неорганических элементов в жизнедеятельности организма.
		3. Значение загрязнения водоемов для организма. Предельно допустимые концентрации веществ (ПДК) в воде.
		4. Основные металлоорганические соединения, имеющие значение для организма.
		5. Источники и переносчики энергии в клетке и организме.
		7. Значение физико-химических реакций для живой клетки.
		8. Дзета-потенциал клетки, связь с окружающей биологической жидкостью.
		9. Модельные биологические жидкости для экспериментальной биомедицины (физиологический раствор; имитация

	Оценочные мероприятия	Примеры типовых контрольных заданий
		жидкостей организма (simulated body fluid, питательные среды для клеток).
		10. Проблемы стерилизации материалов и жидкостей для биологии и медицины.
		11. Физико-химические особенности наночастиц для биомедицины.
		12. Лаборатория на чипе (labs-on-a-chip) - значение и перспективы для биомедицины.
		13. Перспективы и проблемы применения благородных газов в биомедицине.
		14. Классификация искусственных материалов для биомедицины.
		15. Современные материалы для дизайна систем доставки лекарств и биологических молекул.
		Раздел 4
		1. Роль биоинформатики и численного моделирования в медико-биологических исследованиях.
		2. Обзор программных продуктов для имитационного моделирования в биомедицине.
		3. Актуальные проблемы численных методов исследования в биомедицине.
		4. Применение высокопроизводительных параллельных вычислений в медико-биологических исследованиях.
		5. Имитационное моделирование в клеточной биологии: конструирование и численное исследование простых
		моделей клеток и их колоний, исследование влияние стимуляторов роста и антибиотиков на клеточные популяции.
		6. Структурное и функциональное моделирование биологических тканей и органов.
		7. Мета-анализ как метод исследования в биомедицине: преимущества и ограничения.
		8. Жизненный цикл биомедицинских технологий.
		9. Этические и социальные аспекты внедрения новых технологий биомедицины в клиническую практику.
		10. Применение биоинформационного подхода для исследования взаимодействия сложных биомолекул.
		11. Применение инструментальных средства биоинформатики: работа с базами данных биомолекул, программное
		обеспечение для моделирования структуры белков и трехмерной визуализации.
		12. Этические проблемы биоинформатики.
2.	Семинар	Темы семинаров:
		1. Устойчивое развитие и проблемы изменения глобального климата.
		2. Энергетическая стратегия РФ. ЕС-2030.
		3. Способы хранения водорода.
		4. Электрохимическое хранение энергии для зеленой энергосистемы.
		5. Основные принципы «зеленой» химии и «зеленой» технологии.
		6. Вода как «зеленая» реакционная среда.
		7. Органический катализ, как разновидность катализа и будущая альтернатива гетерогенному катализу.
		8. Использование физической органической химии для формирования курса электрохимических реакций.
		9. Влияние окружающей среды на организм и клеточные системы
		10. Клетка как основная структурно-функциональная единица биологической ткани. Проблемы границы раздела
		"клетка/вещество" в биомедицинских технологиях.
		11. Вопросы нанотехнологий в биологии и медицине.
		12. Системы доставки лекарств и биологических молекул: принципы дизайна и проблемы применения.
		13. Моделирование процессов клеточного роста.
		14. Имитационное моделирование в клеточной биологии: конструирование и численное исследование простых
		моделей клеток и их колоний, исследование влияние стимуляторов роста и антибиотиков на клеточные популяции.
		15. Структурное и функциональное моделирование биологических тканей и органов.

	Оценочные мероприятия	Примеры типовых контрольных заданий
		16. Применение биоинформационного подхода для исследования взаимодействия сложных биомолекул.
3.	Экзамен	Вопросы к экзамену:
		Раздел 1
		1. Использование ископаемых топлив в современном мире.
		2. Атомная энергетика.
		3. Гидроэнергетика.
		4. Возобновляемые виды энергии.
		5. Прогноз развития энергетики мира и России.
		Темы докладов
		6. Основные вехи в истории водородной энергетики
		7. Водород и его свойства
		8. Получение водорода. Сравнение различных методов производства водорода
		9. Проблемы хранения водорода
		10. Использование водорода
		11. Современное состояние исследований и разработок в области водородных энерготехнологий
		Раздел 2. 12 принципов «зеленой» химии.
		1. Prevent Waste
		2. Atom Economy
		3. Less Hazardous Synthesis
		4. Design Benign Chemicals
		5. Benign Solvents & Auxiliaries
		6. Design for Energy Efficiency
		7. Use of Renewable Feedstocks
		8. Reduce Derivatives
		9. Catalysis (vs. Stoichiometric)
		10. Design for Degradation
		11. Real-Time Analysis for Pollution Prevention
		12. Inherently Benign Chemistry for Accident Prevention
		Раздел 3
		1. Взаимосвязь "зеленой" химии и технологий с биомедициной.
		2. Роль неорганических элементов в жизнедеятельности организма.
		3. Значение загрязнения водоемов для организма. Предельно допустимые концентрации веществ (ПДК) в воде.
		4. Основные металлоорганические соединения, имеющие значение для организма.
		5. Источники и переносчики энергии в клетке и организме.
		7. Значение физико-химических реакций для живой клетки.
		8. Дзета-потенциал клетки, связь с окружающей биологической жидкостью.
		9. Модельные биологические жидкости для экспериментальной биомедицины (физиологический раствор; имитация
		жидкостей организма (simulated body fluid, питательные среды для клеток).
		10. Проблемы стерилизации материалов и жидкостей для биологии и медицины.
		11. Физико-химические особенности наночастиц для биомедицины.

Оценочные мероприятия	Примеры типовых контрольных заданий
	12. Лаборатория на чипе (labs-on-a-chip) - значение и перспективы для биомедицины.
	13. Перспективы и проблемы применения благородных газов в биомедицине.
	14. Классификация искусственных материалов для биомедицины.
	15. Современные материалы для дизайна систем доставки лекарств и биологических молекул.
	Раздел 4
	1. Моделирование процессов клеточного роста.
	2. Имитационное моделирование в клеточной биологии: конструирование и численное исследование простых
	моделей клеток и их колоний, исследование влияние стимуляторов роста и антибиотиков на клеточные популяции.
	3. Структурное и функциональное моделирование биологических тканей и органов.
	4. Применение биоинформационного подхода для исследования взаимодействия сложных биомолекул.
	5. Применение инструментальных средства биоинформатики: работа с базами данных биомолекул, программное
	обеспечение для моделирования структуры белков и трехмерной визуализации.
	6. Использование мета-анализа информации, содержащейся в базах медицинских данных, как исследовательского
	метода биомедицины.

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Индивидуальное домашнее	Студент предоставляет отчет по ИДЗ, оформленный в соответствии с требованиями:
	задание	— объём: 10–15 страниц (для тем второго раздела допускается объём до 10 страниц, поскольку необходимо
		воспользоваться иностранными источниками);
		— структура работы: введение, основная часть (может быть разбита на несколько разделов по вашему усмотрению),
		заключение, список литературы. Для тем второго раздела постарайтесь отразить не только характеристику принципа,
		но и его применение, а также укажите, как данный принцип реализуется в вашей научной работе;
		— оформление работы в соответствии с СТО ТПУ 2.5.01-2006;
		— оформление библиографических ссылок на использованные источники информации согласно ГОСТ Р 7.0.5—
		2008.
		Защита ИДЗ проводится в виде устного сообщения с презентацией. Критериями оценки ИДЗ являются: качество
		подготовки и оформления отчета, степень проработки известной литературы с использованием полнотекстовых баз
		данных, качество устного доклада, подготовки презентации и ответы на вопросы.
2.	Семинар	Семинар проводится в виде устного обсуждения или дискуссии по теме определённой преподавателем. На семинаре
		могут обсуждаться проблемные ситуации, кейсы. Критерии оценки включают глубину и полноту ответов на
		вопросы, способность принимать решение и обосновывать свое мнение в проблемных ситуациях, комплексный
		подход к решению кейсов.
3.	Экзамен	По итогам освоения курса проводится экзамен в устной форме. В ходе экзамена студент индивидуально получает
		билет с тремя вопросами по всем разделам курса. На подготовку дается 20 минут после чего студент устно отвечает
		по вопросам (допускается ведение записи и подготовка опорного текста для ответов). Критерии оценки включают
		качество и полноту ответа на вопросы.