ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ <u>2020</u> г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

Прикладная оптика				
Направление подготовки/ специальность			12.03.02 Оптотехника	
Образовательная программа (направленность (профиль))	Лазерная и световая техника			
Специализация		(Оптико-электронные приборы и системы	
Уровень образования			высшее образование - бакалавриат	
Курс Трудоемкость в кредитах (за- четных единицах)	4 семестр	7	6	
Заведующий кафедрой – руководитель отделения	May		Клименов В. А.	
Руководитель ООП	ANTO	/	Степанов С. А.	
Преподаватель			Агапов Н.А.	

1. Роль дисциплины «Прикладная оптика» в формировании компетенций выпускника:

Элемент обра-	Ce-			Индикаторы достижения компетенций		
зовательной программы (дисциплина, практика, ГИА	р	Код компе- тенции	Наименование компетенции	Код индикатора	Наименование индикатора достижения	
		ПК(У)-2	Способность к математическому моделированию процессов и объектов оптотехники и их исследованию на базе профессиональных пакетов автоматизированного проектирования и самостоятельно разработанных программных продуктов	И.ПК(У)-2.1	Разрабатывает алгоритмы и реализует математические и компьютерные модели моделирования оптических явлений на языке высокого уровня с использованием объектно-ориентированных технологий	
				И.ПК(У)-2.2	Разрабатывает, реализует и применяет в профессиональной деятельности различные численные методы, в том числе реализованные в готовых библиотеках при решении конкретных оптических задач	
		7 ПК(У)-3	Способность к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем, приборов, деталей и узлов оптотехники на схемотехническом и элементном уровнях, в том числе с использованием систем автоматизированного проектирования	И.ПК(У)-3.1	Разрабатывает функциональные и структурные схемы оптотехники, определяет физические принципы действия устройств в соответствии с техническими требованиями с использованием теоретических методов и программных средств проектирования и конструирования	
Прикладная оптика	7			И.ПК(У)-3.2	Рассчитывает, визуализирует и моделирует действие оптических элементов и систем с использованием специализированного программного обеспечения, обрабатывает и анализирует результаты расчета с использованием специализированного программного обеспечения	
				И.ПК(У)-3.3	Разрабатывает проектно- конструкторскую и техническую документацию на всех этапах жизненного цикла оптических, оптико-электронных приборов, механических блоков, узлов и деталей в соответствии с требованиями технического задания, стандартов качества, надежности, безопасности и технологичности с использованием систем автоматизированного проектирования	
				И.ПК(У)-3.4	Согласовывает разработанную проектно- конструкторскую документацию с другими подразделениями, организациями и представителями заказчиков в установленном порядке, в том числе с применением современных средств электронного документооборота	

2. Показатели и методы оценивания

План Код	нируемые результаты обучения по дисциплине Наименование	Код индикатора достижения контролируемой компетенции (или ее части)	Наименование раздела дисциплины	Методы оценивания (оценочные мероприятия)
РД-1	Знание принципов работы оптических систем.	И.ПК(У)-2.1 И.ПК(У)-2.2 И.ПК(У)-3.1 И.ПК(У)-3.2 И.ПК(У)-3.3 И.ПК(У)-3.4	Основы расчета и проектирования оптических систем. Графические методы построения хода луча для иллюстрации принципа действия оптических систем. Матричные методы расчета параметров и анализа свойств оптических систем	Защита лабораторных работ Коллоквиум
РД-2	Готовность к применению методов расчета оптических систем различного назначения, методов математического и компьютерного моделирования оптических систем.	И.ПК(У)-2.1 И.ПК(У)-2.2 И.ПК(У)-3.1 И.ПК(У)-3.2 И.ПК(У)-3.3 И.ПК(У)-3.4	Основы расчета и проектирования оптических систем. Расчет конструктивных параметров и анализ качества изображения простейших оптических систем (асферических зеркал, линз со сферическими и асферическими поверхностями), анализ качества изображения (расчет полевых аберраций, точечных диаграмм и т.д.) с использованием специализированного программного обеспечения.	Защита лабораторных работ Коллоквиум
РД-3	Готовность обрабатывать, анализировать и систематизировать научно-техническую информацию, передовой отечественный и зарубежный опыт в области проектирования оптических приборов и применения их на практике	И.ПК(У)-2.1 И.ПК(У)-2.2 И.ПК(У)-3.1 И.ПК(У)-3.2 И.ПК(У)-3.3 И.ПК(У)-3.4	Оптические и оптические визуальные приборы Проектирование и разработка конструкторской документации на оптические и оптические визуальные приборы с использованием отечественного и зарубежного опыта.	Защита курсового проекта

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции).

Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

% выполнения заданий экза- мена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки
90%÷100%	18 ÷ 20	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	11 ÷ 13		Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

№	Оценочные мероприятия	Примеры типовых контрольных заданий
	Коллоквиум (решить задачи)	1. Задана преломляющая поверхность: $r = 40$, $n = 1$, $n' = 1.5$. Рассчитать кардинальные элементы и изобразить на рисунке. 2. Задана толстая линза в воздухе: $r_1 = -70$, $r_2 = 60$, $d = 10$, $n = 1.5$. Плоскость предмета расположена на расстоянии $s = -20$. Рассчитать линейное, угловое и продольное увеличение. 3. Построить графически изображение предмета в зеркале. Рассчитать положение и величину изображения, если задано: $r = 100$, $y = 10$, $s = 250$.
1		1. Задана отражающая поверхность: $r = 60$, $n = 1.5$, $n' = 1.5$. Рассчитать кардинальные элементы и изобразить на рисунке. 2. Задана система из двух тонких линз в воздухе: $\Phi_1 = 0.01$, $\Phi_2 = 0.01$, $d = 150$, расстояние до плоскости предмета от первой линзы $s_1 = -150$. Рассчитать: положение главных и узловых точек. Указать на рисунке все заданные и рассчитанные величины. 3. Построить графически изображение предмета в зеркале. Рассчитать положение и величину изображения, если задано: $r = 100$, $y = 10$, $s = 40$.

1	Коллоквиум (решить задачи)	1. Задана толстая линза в воздухе: $r_1 = 100$, $r_2 = -100$, $d = 10$, $n = 1.5$. Рассчитать положение главных и узловых точек. Указать на рисунке все заданные и рассчитанные величины. 2. Заданы исходные данные для расчета апланатической линзы: $s_1 = -100$, $n = 1.5$, $d = 10$. Рассчитать: r_1 , r_2 , s_2' . Указать на рисунке все заданные и рассчитанные величины, построить ход луча. 3. Построить графически изображение предмета в зеркале. Рассчитать положение и величину изображения, если задано: $r = -100$, $y = 10$, $s = -100$.	
		'	
2	Защита лабораторной работы	 Какие поверхности называются декартовыми. Виды и свойства декартовых отражающих поверхностей. Виды и свойства декартовых преломляющих поверхностей. Варианты зеркальных оптических систем с использованием свойств декартовых отражающих поверхностей. Объяснить принцип работы системы. Варианты линзовых оптических систем с использованием свойств декартовых преломляющих поверхностей. Объяснить принцип работы системы. Построить графически ход заданного луча через тонкую отрицательную линзу четырьмя способами. Построить кардинальные точки линзы (зеркального объектива) по результатам расчета. Построить графически главные плоскости заданной системы тонких линз. Рассказать, что такое сферическая аберрация и как она рассчитывается. Рассказать, что такое дисторсия и как она рассчитывается. 	
3	Защита курсового проекта	 Какая система называется телескопической. Что такое видимое увеличение и как оно рассчитывается. Как рассчитывается угловое увеличение телескопической системы. Где располагаются кардинальные точки телескопической системы. Как рассчитывается линейное увеличение телескопической системы. 	

5. Методические указания по процедуре оценивания

1.	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания		
2.	Коллоквиум	Проводиться в письменной форме по билетам. В каждом билете три задачи. Максимальное количество бал-		
		лов установлено рейтинг-планом дисциплины для данного вида контроля.		
3.	Защита лабораторной рабо-	Проводится в устной форме. Студент отвечает на все вопросы, предусмотренные методическим руковод-		
	ты	ством к лабораторной работе, каждый правильный ответ оценивается в баллах, установленных рейтинг-		
		планом дисциплины для данного вида контроля.		
4.	Курсовой проект	Каждый студент выполняет курсовой проект по индивидуальному заданию. В конце семестра осуществляется		
		защита проекта перед комиссией. Максимальное количество баллов за курсовой проект установлено рейтинг-		
		планом дисциплины для данного вида контроля.		
5.	Экзамен	Проводиться в устной форме. Время на подготовку к ответу составляет 60 минут. Студент отвечает		
		на три вопроса экзаменационного билета. Каждый правильный ответ оценивается в баллах пропор-		
		ционально максимальному количеству баллов установленных рейтинг-планом дисциплины для дан-		
		ного вида контроля поделенному на три.		