

APPROVED BY

Director of the School of Advanced Manufacturing Fechnologies Alexey N. Yakovlev

Course Name Modeling and simulation in material science and mechanical engineering

Field of Study: Major 22.04.01 Material Science and Technologies

Programme name: Material Science

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: 3, 2020

ECTS: 6

Total Hours: 216 Contact Hours: 64

Lectures: 16Labs: 40

Practical experience: 8

Assessment: exam

Division for Materials Science

Head of Division for Materials Science Vasiliy A. Klimenov

Instructor(s) Mikhail V. Burkov

Course Name

Course Overview

	The subject is focused on training of specialists in the field of research and
Course Objectives	development of novel structural and functional materials. The students will obtain
	knowledge and skills in the field of computer simulation of materials and
	technological processes.
Learning Outcomes	Professional competency includes knowing of issues on the research and development
	of novel materials and structures, in particular:
	- materials for structural and functional applications for different industries, including
	mechanical engineering, aerospace and medicine
	- technology of surface hardening and coating;
	- principles for design of novel materials – nanostructured, smart, gradient and
	composite materials with ceramic, metal and polymer matrix;
	- technologic facilities and devices for surface hardening and coating deposition;
	- manufacturing processes for advanced materials;
	- methods for investigation of properties and diagnostics of loaded materials and
	structures;
	- physical and chemical models of materials and manufacturing processes;
	- law and regulatory issues of application of new materials.
Course Outline	The course involves lectures, practical classes and laboratory works. Application of
	finite element method for simulation of loaded materials, machining (milling, drilling,
-	etc.) and metallurgical (casting, forging, rolling, etc.) processes;
Prerequisites	Theory of materials structure; Physical and mechanical properties of materials;
(if available)	Modelling and optimization of materials properties and technological processes
Course Structure	Simulation of materials and structures;
	 First principal modeling (quantum and electron, atomistic, etc.);
	Molecular dynamics;
	Cellular automata (as well as movable cellular automata for modeling of
	materials);
	Finite element method;
	Simulation of technological processes.
	Computer class equipped with ABAQUS and Solidworks software. Optical
Facilities and Equipment	microscopes, Optical profilometer New View 6200, Universal electromechanical
	Inston 5582 and hydraulic BiSS UTM 150 testing machines.
	In accordance with TPU rating system we use:
Grading Policy	- Current assessment which is performed on a regular basis during the semester
	by scoring the quality of mastering of theoretical material and the results of
	practical activities (performance tests, perform tasks, problem solving). Max
	score for current assessment is 80 points.
	- Course final assessment (exam/ credit test) is performed at the end of the
	semester. Max score for course final assessment is 20 points.
	The final rating is determined by summing the points of the current assessment during
	the semester and exam (credit test) scores at the end of the semester. Maximum
	overall rating corresponds to 100 points, min pass score is 55.
	Class attendance will be taken into consideration when evaluating students'
Course Policy	participation in the course. Students are expected to actively engage in class
	discussions about the assigned readings. Attendance is strictly controlled. All classes
	discussions about the assigned readings. Attendance is strictly controlled. All classes

	are obligatory to presence.
Teaching Aids and Resources	Electronic learning course LMS Moodle «Computer Simulation of Materials and Technologies» - http://stud.lms.tpu.ru/course/view.php?id=166.
Instructor (-s)	Mikhail V. Burkov, <u>burkovispms@mail.ru</u> , (3822) 286922