

APPROVED BY

Director of the School of Advanced Manufacturing
Technologies ______ Alexey N. Yakovlev

Course Name Condition Monitoring and Reliability Inspection of Materials and Parts

Field of Study: Major 22.04.01 Material Science and Technologies

Programme name: Material Science

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: 3, 2020

ECTS: 6

Total Hours: 216 Contact Hours: 48

Lectures: 16

• Labs: 16

• Practical experience: 16

Assessment: exam

Division for Materials Science

Head of Division for Materials Science

Vasiliy A. Klimenov

Instructor(s)

Sergey V. Panin

Course Name

Course Overview

Course	The aim of the subject is to introduce the principles and methods in the field technical diagnostics and non-destructive testing to be applied for different materials and
Objectives	structures. Special attention is paid to optical and acoustical methods and their
Objectives	combination, as well as to novel information technologies in material science.
	Professional competency includes knowing of issues on the research and development
	of novel materials and structures, in particular: - materials for structural and functional applications for different industries, including electronics and medicine, and technology of surface hardening and coating;
Learning Outcomes	- principles for design of novel materials - nanostructured, smart, gradient and
	composite materials with ceramic, metal and polymer matrix;
	- technologic facilities and devices for surface hardening and coating deposition;
	- manufacturing processes for advanced materials;
	- methods for investigation of properties and diagnostics of loaded materials and
	structures;
	- physical and chemical models of materials and manufacturing processes;
	- law and regulatory issues of application of new materials.
	The course involves lectures, practical classes and laboratory works. Design and
Course Outline	operation principles of structural health monitoring systems and basic of fracture
	mechanics for estimating materials mechanical state and predicting life time;
Prerequisites	Materials Science; Theory of materials structure; Physical and mechanical properties
(if available)	of materials
Course Structure	 Methods for non-destructive testing;
	Acoustical methods for non-destructive testing and structural health
	monitoring: ultrasonic method, acoustic emission method, modal analysis
	for ultrasonic and low frequency methods, vibration-based methods;
	Optical methods for condition monitoring (thin foil sensors) and strain
	gaging using resistive and optical fiber sensors;
	Development of wireless (power supply and data transfer) sensors for
	structural health monitoring;
	Optical microscopes, Hardness testers, X-ray diffractometer XRD-7000, Transmission
Facilities and Equipment	electron microscope JEM-2100, Scanning electron microscope JSM-7500, Polymer
	specimen preparation line (grinders, mixers, extruders, thermopress, etc), Optical
	profilometer New View 6200, Nano indenter Nanotest 600 and G200 (MTS),
	Universal electromechanic Inston 5582 and hydraulic BiSS UTM 150 testing
	machines.
Grading Policy	In accordance with TPU rating system we use:
	- Current assessment which is performed on a regular basis during the semester
	by scoring the quality of mastering of theoretical material and the results of
	practical activities (performance tests, perform tasks, problem solving). Max
	score for current assessment is 60 points, min – 40 points.
	- Course final assessment (exam/ credit test) is performed at the end of the
	semester. Max score for course final assessment is 40 points, min – 22 points.
	The final rating is determined by summing the points of the current assessment during
	the semester and exam (credit test) scores at the end of the semester. Maximum
	overall rating corresponds to 100 points, min pass score is 80.

	Class attendance will be taken into consideration when evaluating students'
Course Policy	participation in the course. Students are expected to actively engage in class
J 3 3 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3	discussions about the assigned readings. Attendance is strictly controlled. All classes
	is obligatory to presence.
Teaching Aids	Compulsory Readings: Domestic and international scientific and engineering journals
and Resources	
	Structural health monitoring, Engineering Structures, Smart Structures and Systems,
	Structural Control & Health Monitoring, Earthquake Engineering & Structural
	Dynamics, Iranian Journal of Environmental Health Science & Engineering, Sensors,
	Smart Materials & Structures
	Additional Readings: Domestic and international scientific and engineering journals
	Journal of Materials Research, Russian Chemical Bulletin, Computers & Structures,
	Engineering economics, Future Generation Computer Systems, Journal of
	Environmental Management
	Internet:
	http://shm.sagepub.com/
Instructor (-s)	Sergey V. Panin, svp@ispms.tsc.ru, 286904