ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2019 г.

ФОРМА ОБУЧЕНИЯ очная

Математика 2

Направление подготовки/ специальность	05.03	3.06 Экология и природопользование
Образовательная программа (направленность (профиль))		Геоэкология
Специализация		Геоэкология
Уровень образования	высшее образование – бакалавриат	
Курс	1 семестр 2	
Трудоемкость в кредитах (зачетных единицах)		6
Заведующий кафедрой – руководитель ОМИ на правах кафедры	Al .	Трифонов А.Ю.
Руководитель ООП	A	Азарова С.В.
Преподаватель	Tis	Тарбокова Т.В.

1. Роль дисциплины «Математика 2» в формировании компетенций выпускника:

Элемент			рормировании компетенции		вультатов освоения (дескрипторы компетенций)
образовательной программы (дисциплина)	Семестр	Код компетенции	Наименование компетенции	Код	Наименование
		VIV.(VA 1	Способен осуществлять поиск, критический анализ и синтез	УК(У)-1.В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера
		системный подход для решения УК(У)-1.У1 прикладного ха	Умеет решать задачи теоретического и прикладного характера		
			поставленных задач	УК(У)-1.31	Знает законы естественных наук и математические методы теоретического характера
Математика 2	2		Владение базовыми знаниями в области фундаментальных разделов математики в объеме,	ОПК(У)-1.В2	Владеет математическим аппаратом дифференциального и интегрального исчисления для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач
	ОПК(У)-1 математическим аппар экологических наук, об	необходимом для владения математическим аппаратом экологических наук, обработки	ОПК(У)-1.У2	Умеет применять аппарат дифференциального и интегрального исчисления для решения стандартных задач	
			информации и анализа данных по экологии и природопользованию	ОПК(У)-1.32	Знает основные понятия и теоремы дифференциального исчисления функции нескольких переменных и интегрального исчисления функции одной и нескольких переменных

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Код достижения	Наименование раздела	Методы оценивания
Код	Наименование	контролируемой	дисциплины	(оценочные мероприятия)
		компетенции (или ее		
РД 1	Уметь интегрировать рациональные, простейшие иррациональные, тригонометрические функции	части) УК(У)-1 ОПК(У)-1	1. Неопределенный интеграл	Контрольная работа ИДЗ. Тестирование – независимый контроль ЦОКО

РД 2	Уметь вычислять определенные и несобственные интегралы	УК(У)-1 ОПК(У)-1	2.Определенный и несобственный интеграл	Контрольная работа ИДЗ. Тестирование – независимый контроль ЦОКО
РД 3	Уметь исследовать функции нескольких переменных	УК(У)-1 ОПК(У)-1	3. Дифференциальное исчисление функций нескольких переменных	Контрольная работа ИДЗ. Тестирование – независимый контроль ЦОКО
РД 4	Уметь находить кратные, криволинейные и поверхностные интегралы	УК(У)-1 ОПК(У)-1	4. Кратные интегралы 5. Элементы векторного анализа	Контрольная работа ИДЗ. Тестирование – независимый контроль ЦОКО

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий и дифференцированного зачета

Степень сформированности результатов обучения	Балл	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	90 ÷ 100	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% ÷ 89%	70 ÷ 89	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% ÷ 69%	55 ÷ 69	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
55% ÷ 100%	55 ÷ 100	«Зачтено»	Результаты обучения соответствуют минимально достаточным требованиям
0% ÷ 54%	0 ÷ 54	«Неудовл.»/ «Не зачтено»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

•	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Контрольна я работа	Контрольная работа №1 по теме «Неопределенный интеграл» ВАРИАНТ №1
		$1. \int \frac{x dx}{\sqrt{2x^2 + 3}} . \qquad \qquad 2. \int \frac{\sin 3x dx}{\sqrt[3]{\cos^4 3x}} . \qquad \qquad 3. \int \frac{dx}{arctgx(1 + x^2)} .$
		4. $\int \frac{e^{2x}dx}{e^{2x}+2}$ 5. $\int x\sqrt{1-x^2} dx$ 6. $\int (1+x)\sin 2x dx$.
		7. $\int \frac{xdx}{(x+1)(x+3)(x+5)}$ 8. $\int \frac{\sin^4 x}{\cos^6 x} dx$ 9. $\int \frac{\sqrt{x}dx}{\sqrt{\sqrt{x^3}+4}}$

Эценочные ероприятия	Примеры типовых контрольных заданий
	Контрольная работа №2 по теме «Определенный интеграл» ВАРИАНТ №1 1. $\int_{0}^{\pi} (2x + \sin 2x) dx$ 3. $\int_{\frac{1}{2}}^{1} \sqrt{4x - 2} dx$
	2. $\int_{0}^{1} xe^{x}$ 4. $\int_{1}^{3} \frac{dx}{x^{2} + x}$ 1. Вычислить несобственные интегралы или установить их расходимость: а) $\int_{3}^{\infty} \frac{x^{2}dx}{x^{2} + 4}$ 6) $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx$
	2. Вычислить площадь фигуры, ограниченной линиями: a) $y = x^3$, $y = x^2$, $x = -2$, $x = 1$. 6) $\rho = 3\text{-}2\cos \mathcal{O}$, $\beta = \frac{1}{2}$ 3. Вычислить длину дуги кривой $y = 1\text{-}\ln\sin x$, от $x = 0$ до $x = \frac{\pi}{4}$

Оценочные мероприятия	Примеры типовых контрольных заданий
	Контрольная работа №3 по теме «Кратные интегралы» ВАРИАНТ №1
	1. Изменить порядок интегрирования: $ \int_{0}^{1} dx \int_{x-4}^{4-x} f(x,y) dy $ 2. Расставить границы интегрирования
	$\iint_D f(x,y) dx dy$ D: $y = x$, $y = 2x$, $x+y=6$ 1. Найти площадь фигуры, ограниченной линиями: $x^2 + y^2 - 2x = 0$,
	1. Найти площадь фигуры, ограниченной линиями: $x^2 + y^2 - 2x = 0$, $y = x$, $y = 0$.
	2. Найти объем тела, ограниченного указанными поверхностями: $x^2+y^2-8x=0, x^2+y^2=z^2, z=0.$
	3. Найти массу тела, ограниченного поверхностями : $x^2+z^2=1, y=0, y=1,$ если $\rho(x,y,z)=k(x^2+y^2+z^2).$
	Контрольная работа №4 по теме «Элементы векторного анализа» ВАРИАНТ №1
	1. Вычислить криволинейный интеграл 1^{ro} рода $\int (1+x^2) dl \text{гле } L: x^2+v^2=av$
	$\int_{(L)} (1+x^2) dl , \text{где } L : x^2 + y^2 = ay .$ 2. Вычислить работу силового поля. Проверить зависит ли интеграл от траектории интегрирования?
	Если не зависит, то упростить вычисления. $\int\limits_{(L)} (xy-1)dx + x^2y^2dy , \text{где } L:AB;A(1,0);B(0,2) .$

Оценочные мероприятия	Примеры типовых контрольных заданий
	3. Вычислить поверхностный интеграл $\iint_{(S)} dS$, где S – часть плоскости $x+y+z=a$, заключенная в первом октанте. 4. Найти поток векторного поля $\vec{A}=4\vec{i}-9\vec{j}$ через внешнюю сторону поверхности параболоида вращения $y=x^2+z^2$, огранич. плоскостью $y=4$, при $x\leq 0$, $z\geq 0$. 5. $\vec{A}=(x+\ln z)\vec{i}+(y+\ln x)\vec{j}+(z+\ln y)\vec{k}$. div $\vec{A}=?$, rot $\vec{A}=?$

	Оценочные мероприятия	Примеры типовых контрольных заданий	
2.	идз.		
		задание и 9 Вариант 22	
		Неопределенный интеграл	
		1. $\int \frac{\sin 9x dx}{5 + \cos^2 9x}$ 2. $\int \frac{3 - 2 \cot^2 x}{\cos^2 x} dx$ 3. $\int \frac{dx}{x \ln x \ln^2(\ln x)}$ 4. $\int \frac{e^x dx}{\sqrt{e^x + 1}}$ 5. $\int \frac{x^2 dx}{(7x^3 + 5)^4}$ 6. $\int \sin(1/x) \frac{dx}{x^2}$ 7. $\int \frac{(1 - 2x^2)^2 dx}{x \cdot \sqrt[3]{x}}$ 8. $\int \frac{dx}{\sqrt{1 - 9x^2} \sqrt{1 - \arcsin 3x}}$	
		3. $\int \frac{dx}{x \ln x \ln^2(\ln x)}$ 4. $\int \frac{e^x dx}{\sqrt{e^x + 1}}$	
		5. $\int \frac{x^2 dx}{(7x^3 + 5)^4}$ 6. $\int \sin(1/x) \frac{dx}{x^2}$ 6. $\int \sin(1/x) \frac{dx}{x^2}$ 6. $\int \sin(1/x) \frac{dx}{x^2}$	
		7. $\int \frac{(1-2x^{2})^{2} dx}{x \cdot \sqrt[3]{x}}$ 8. $\int \frac{dx}{\sqrt{1-9x^{2}} \sqrt{1-\arcsin 3x}}$ 9. $\int \frac{dx}{\sqrt{3+5x^{2}}}$ 10. $\int x^{3} \cdot \sqrt[5]{7x^{4}-9} dx$	
		9. $\int \frac{dx}{\sqrt{3+5x^2}}$ 10. $\int x^3 \cdot \sqrt[5]{7x^4 - 9} dx$ 11. $\int (x^2 + 3) \cdot e^{-2x} dx$ 12. $\int \frac{\ln(\cos x) dx}{\cos^2 x}$ 13. $\int (x+6) \cdot \cos 6x dx$ 14. $\int \frac{\arccos x dx}{\sqrt{1-x}}$	
		11. $\int (x^2 + 3) \cdot e^{-2x} dx$ 12. $\int \frac{\ln(\cos x) dx}{\cos^2 x}$ 13. $\int (x + 6) \cdot \cos 6x dx$ 14. $\int \frac{\arccos x dx}{\sqrt{1 - x}}$	
		15. $\int 2^x \cdot \cos 3x dx$ 16. $\int \ln(x + \sqrt{x^2 - 4}) dx$	
		17. $\int \frac{dx}{x^2 + 8x + 12}$ 18. $\int \frac{dx}{\sqrt{1 - 8x - 4x^2}}$ 19. $\int \frac{(x+4)dx}{7 + 6x - x^2}$ 20. $\int \frac{(6x-1)dx}{\sqrt{x^2 + 3x + 8}}$	
		17. $\int \frac{dx}{x^2 + 8x + 12}$ 18. $\int \frac{dx}{\sqrt{1 - 8x - 4x^2}}$ 19. $\int \frac{(x+4)dx}{7 + 6x - x^2}$ 20. $\int \frac{(6x-1)dx}{\sqrt{x^2 + 3x + 8}}$ 21. $\int \frac{x^2 - 2x + 1}{x^3 + 2x^2 + x} dx$ 22. $\int \frac{(x-1)dx}{x^3 + 5x}$	
		21. $\int \frac{x^3 + 2x^2 + x}{x^3 + 5x} dx$ 22. $\int \frac{x^3 + 5x}{x^3 + 5x}$ 23. $\int \frac{(x^2 - x) dx}{8x^3 - 125}$ 24. $\int \frac{x + \sqrt[3]{x^2 + \sqrt[3]{x}}}{x \cdot (1 + \sqrt[3]{x})} dx$	
		25. $\int \frac{x^3 - 5x^2 + 5x + 23}{(x-1)(x+1)(x-5)} dx$ 26. $\int \frac{dx}{\sqrt{x+1}+1}$	
		27. $\int \frac{\sqrt[5]{(1+\sqrt[5]{x^2})^4}}{x^2 \cdot \sqrt[5]{x}} dx$ 28. $\int \frac{x dx}{\sqrt{x+2} + \sqrt{x+6}}$ 29. $\int \frac{\sqrt[5]{x^2 dx}}{x}$ 30. $\int \frac{x^2 dx}{\sqrt{(2+x^2)^3}}$	
		29. $\int \frac{\sqrt{x^2 - 3} dx}{x}$ 30. $\int \frac{x^2 dx}{\sqrt{(2 + x^2)^3}}$	
		31. $\int \frac{dx}{\cos^3 x \sin^2 x}$ 32. $\int \cos^4 \left(\frac{x}{4}\right) dx$	
		33. $\int \frac{\cos^2 x \sin x}{dx}$ 34. $\int \frac{dx}{4 + 3\cos^2 x}$ 35. $\int \sqrt[3]{\sin^2 x} \cos^5 x dx$ 36. $\int \frac{dx}{1 + \cot x}$	
		35. $\int \sqrt[3]{\sin^2 x} \cos^5 x dx$ 36. $\int \frac{dx}{1 + \operatorname{ctg} x}$ 37. $\int \frac{e^{2x} dx}{\sqrt[3]{e^x - 1}}$ 38. $\int x^3 \cdot \operatorname{arctg} x dx$	
		$\int \sqrt[4]{e^x - 1}$	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	ЗАДАНИЕ N 10 Вариант 20 Определенный интеграл	
	1. Вычислить определённые интегралы 1) $\int_{1}^{4} \frac{1+\sqrt{x}}{x^2} dx$ 2) $\int_{0}^{1} \sqrt{(1-x^2)^3} dx$ 3) $\int_{-2}^{2} \ln(x+\sqrt{1+x^2}) dx$ 4) $\int_{0}^{\pi/2} \frac{dx}{5-3\cos x}$ 5) $\int_{0}^{1/2} \frac{x^2 dx}{x^4-1}$ 6) $\int_{1}^{0} \frac{dx}{1+\sqrt[3]{x+1}}$	
	2. Найти среднее значение функций в указанных интервалах 1) $y=\cos^3 x$, $[0;\ \pi]$ 2) $y=\frac{1}{e^x+1}$, $[0;\ 2]$	
	3. Оценить значения интегралов 1) $\int\limits_0^3 \sqrt[4]{(x^2-2x)^2} dx$ 2) $\int\limits_{1/e}^1 x^2 \ln x dx$	
	4. Исследовать на сходимость несобственные интегралы 1) $\int_{0}^{\infty} \frac{x dx}{16x^4 + 1}$ 2) $\int_{0}^{1} \frac{dx}{\sqrt[5]{(2 - 4x)^3}}$ 3) $\int_{0}^{\infty} \frac{dx}{\sqrt{x(x + 3)(x + 6)}}$ 4) $\int_{0}^{2} \frac{\ln(1 + \sqrt[7]{x^5})}{e^{\sin 2x} - 1} dx$	
	 5. Найти площадь фигуры, ограниченной линиями: 1)	
	1) $\begin{vmatrix} y^2 = 4x/3, \\ x = 3. \end{vmatrix}$ 2) $\begin{vmatrix} y = x, \\ y = x + \sin^2 x, \\ 0 \le x \le \pi. \end{vmatrix}$	
	7. Вычислить длины дуг кривых 1) $L: \mid y = \arcsin x + \sqrt{1 - x^2}$. 2) $L: \mid x = e^t (\cos t + \sin t)$, $y = e^t (\cos t - \sin t)$. $\pi/6 \le \varphi \le \pi/4$.	
	 Вертикальная плотина имеет форму полукруга радиуса 3 м. Найти силу давления воды на плотину. 	

Оценочные мероприятия		
	задание и 8	
	Функции многих переменных	
	1. Найти и изобразить области определения функций:	
	1) $z = \ln(5 - 10x^2 - y^2)$ 2) $z = \frac{1}{\sqrt{y \cdot \sin x}}$	
	$2.$ Найти частные производные z_x' и z_y' функций	
	1) $z = \left(\frac{x^2 - y}{3^y + x}\right)^3$ 2) $z = \sin\frac{x}{x^2 - 5y} \cdot \sqrt{x - 2y^3}$ (x - y) $\frac{3}{\cos(3y - x^2)}$	
	3) $z = e^{\cos 2x} - \operatorname{tg} y \cdot \ln(y^2 - 1)$ 4) $z = \frac{(x - y)}{\operatorname{arctg } 3^{y - x}} - \frac{\sqrt[3]{\cos(3y - x^2)}}{\sin \ln y}$	
	3. Найти частные производные $z_x^{'}$ и $z_y^{'}$ сложной функции	
	$z = \frac{u - 3v}{\operatorname{arctg}(u)}$, где $u = \operatorname{ctg} \frac{1}{x}$, $v = \frac{y}{x^3}$	
	4. Найти производную $z_t^{'}$, если	
	$z=\sqrt{4+{ m ctg}\ (x\ln y)}, { m rae} x=7^{2t}, y=\sqrt[4]{t}$	
	5. Найти производные $\frac{\partial z}{\partial x}$ и $\frac{dz}{dx}$, если	
	$z=\sin(\sqrt{xy}-y^3)$, где $y=\ln(x^2+4)$	
	6. Найти производную y^\prime неявной функции $y(x)$, заданной выражением	
	1) $xy - y \cdot 2^{-x^2} = \sqrt{(x-y)^5}$ 2) $\left(\frac{x}{y}\right)^2 - x \sqrt{y} = \arcsin 3x$	
	7. Найти частные производные z_x' и z_y' неявной функции $z(x,y)$, заданной выражением $e^{z/x} + \cos x - 4xy^4z^3 = 0$	
	8. Найти первый dz и второй d^2z дифференциалы функции $z=\sqrt{\ln(x^2-y^2)}$	
	9. Составить уравнения касательной плоскости и нормали к поверхности $z=4x^2+24xy+11y^2+64x+42y+55$ в точке $M_0(-1;\ 1;\ z_0)$	
	10. Исследовать на экстремум функцию $z = x^3 + y^3 - 9xy + 27$	

	Оценочные мероприятия	Примеры типовых контрольных заданий	
		задание n 11 Вариант 24 Кратные интегралы	
		1. В двойном интеграле $\int_{(D)} f(x;y) \ dx \ dy$ перейти к повторному и расставить пределы интегрирования по области (D), ограниченной линиями: 1) $y = \sqrt{12 - x^2}$, $y = 2\sqrt{3} - \sqrt{12 - x^2}$, $x = 0$, $(x > 0)$.	
		3. Перейти к полярным координатам и вычислить $\iint\limits_{(D)} x \; dx dy, \qquad D: \{x^2 + y^2 \leq bx, \;\; x \geq 0\}.$	
		4. Вычислить площадь фигуры, ограниченной линиями 1) $y=2; y=x^2+5, x=1, x=3.$ 2) $(x^2+y^2)^{5/2}=x\cdot y^2.$ 5. Вычислить массу пластинки, занимающей область (D), при заданной поверхностной плотности $\delta(x;y)$	
		1) $D: \{y=4x+6, \ x-2y-1=0, \ x=-1\}, \ \delta(x;y)=x.$ 2) $D: \{y\leq x^2+y^2\leq 2y\}, \ \delta(x;y)=3y.$ 6. Записать тройной интеграл $\iiint f(x;y;z)\ dx\ dy\ dz$	
		в виде повторного и расставить пределы интегрирования по области (V), ограниченной поверхностями: 1) $z=x^2$, $2x=y$, $x=4$, $y\geq 0$, $z\geq 0$. 2) $x^2+y^2=4$, $y=\sqrt{x^2+z^2}$, $y>0$.	
		7. Вычислить объем тела, ограниченного поверхностями: 1) $x^2+y^2+z^2=1$, $x^2+y^2+z^2=9$, $y\leq x$, $y\geq 0$, $z\geq 0$. 2) $z=4-x^2-y^2$, $x+y=2$, $x\geq 0$, $y\geq 0$, $z\geq 0$.	
		8. Вычислить массу тела, занимающего область $V: \ \{x^2+y^2=2x, \ x+z=2, \ y\geq 0, \ z\geq 0\},$ если задана объемная плотность $\ \gamma(x;y;z)=\dfrac{y}{\sqrt{x^2+y^2}}.$	
<u> </u>			

Оценочные мероприятия	Примеры типовых контрольных заданий	
	ЗАДАНИЕ N 13 Вариант 24 Скалярное и векторное поле	
	1. Найти работу силового поля $\vec{F}(x;\;y)=\{x+\sqrt{x^2+y^2});\;(y-\sqrt{x^2+y^2})\} \text{вдоль дуги плоской кривой} L:\;x=4\cos t,\;\;y=4\sin t,\;\;(x\geq 0;\;\;y\geq 0)$ между точками $\;(4;\;0)\;$ и $\;(0;\;4).$	
	2. Найти работу силового поля $\vec{F} = y \cdot \vec{i} + z \cdot \vec{j} + x \cdot \vec{k}$ вдоль дуги кривой $L: \ x = \cos t, y = -\sin t, z = 2t, t \in [0; \ \pi/2].$	
	3. Найти поток векторного поля \vec{A} через поверхность S в сторону внешней нормали 1) $\vec{A} = \{0; \ y; \ 3z\}$, где $S-$ часть плоскости $x+2y+2z=2$, вырезанной координатными плоскостями.	
	2) $\vec{A} = (\sqrt{2z-y}+7x)\cdot\vec{i} + (\cos z^2 + y)\cdot\vec{j} + (\sqrt{\ln x + y} - 5z)\cdot\vec{k}$, где $S-$ полная поверхность усечённого конуса $z^2 + y^2 = (x-5)^2$, $x=1$, $x=4$.	
	3) $\vec{A}=3x\;z\cdot\vec{i}-2x\cdot\vec{j}+y\cdot\vec{k},\;\;$ где $S-$ полная поверхность тела, ограниченного поверхностями $x+y+z=2,\;x=1,\;x=0,\;y=0,\;z=0.$	
	4. Найти модуль циркуляции векторного поля \vec{A} вдоль контура L 1) $\vec{A} = \{(y - \ln(x+1)); (2x - \cos y)\},$ $L - \text{замкнутая линия} y = x^2, x = y^2.$	
	2) $\vec{A} = y z \cdot \vec{i} - x z \cdot \vec{j} + x y \cdot \vec{k}$, $L - \begin{cases} x^2 + y^2 + z^2 = 9, \\ x^2 + y^2 = 9. \end{cases}$	
	5. Проверить, будет ли векторное поле $\vec{A} = \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{x^2 + y^2 + z^2}}$ потенциальным. В случае положительного ответа найти его потенциал.	
	${f 6.}$ Построить поверхности уровня скалярного поля $U(x;y;z)=rac{\sqrt{y}}{2(x-1)}.$	
	7. Найти производную скалярного поля $U(x;\ y;\ z) = x\ y - x/z$ в точке $M_0(-4;\ 3;\ 1)$ в направлении вектора $l=5\ \vec{i}+\vec{j}-\vec{k}$	
	8. В точке $M_0(1;1/3;1/\sqrt{6})$ найти угол между векторами – градиентами скалярных полей $U(x;y;z)=rac{1}{xvz}, \qquad V(x;y;z)=x^2+9y^2+6z^2$	
	(x,y,z) = xyz	

Оценочные	Примеры типовых контрольных заданий
мероприятия	

	Оценочные	Примеры типовых контрольных заданий
3.	Оценочные мероприятия Тестирован ие — независимы й контроль ЦОКО (РТ3 и РТ4)	Примеры типовых контрольных заданий Вопросы: 1. Интеграл $\int x^2 e^{2x^3} dx$ равен 1. $e^{2x^3} + C$ 2. $6e^{2x^3} + C$ 3. $\frac{1}{2}e^{2x^3} + C$ 4. $\frac{1}{6}e^{2x^3} + C$
		2. Укажите верное разложение рациональной дроби $\frac{2x^2+1}{(x^2-4)(x^2+1)}$ на сумму простых дробей с неопределёнными коэффициентами $\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x^2-4} + \frac{B}{x^2+1}$ $\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x^2+1}$ $\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x^2-4} + \frac{Bx+C}{x^2+1}$ 3. $\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x^2-4} + \frac{Bx+C}{x^2+1}$

Оценочные мероприятия	Примеры типовых контрольных заданий
	$\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1}$
	$\frac{dx}{3. \text{ Интеграл}} \int \frac{dx}{4\cos x + 6\sin x + 5}$ равен
	$\frac{1}{\sqrt{27}} \ln \left \frac{\lg \frac{x}{2} + 6 - \sqrt{27}}{\lg \frac{x}{2} + 6 + \sqrt{27}} \right + C$
	$-\frac{2}{tg\frac{x}{2}+3}+C$ 2.
	$3. \frac{2\left(tg\frac{x}{2}+3\right)^3}{3}+C$
	$4. \ln \left 4\cos x + 6\sin x + 5 \right + C$
	4. Укажите из предложенных подстановку с помощью которой можно избавится от иррациональности в интеграле $\int \frac{5\sqrt{x+1}}{(x+1)^2 \cdot \sqrt{x}} dx$

Оценочные мероприятия	Примеры типовых контрол	ьных заданий
	1. $x = t^{2} - 1$ 2. $x = t^{2}$ $t^{2} = \frac{x+1}{x} + \frac{1}{x}$	
	5. Среднее значение функции $f(x) = \cos^2 x \text{в промежутке}$ $[-\pi/2;0]$ равняется несократимой рациональной (Дробные значения вводить дробью, например $17/6$) 6. После применения формулы интегрирования по частям в определенном интеграле $\int_{1}^{2} \sqrt[3]{x} \cdot \ln x dx \text{получено}$ выражение	Ввод числового ответа $1/2$ 1. $\frac{3}{4}\sqrt[3]{x^4} \cdot \ln x _1^2 - \frac{3}{4}\int_1^2 \sqrt[3]{x} \cdot dx;$ 2. $\sqrt[3]{x^4} \cdot \ln x _1^2 - \int_1^2 \sqrt[3]{x} \cdot dx;$ 3. $\frac{3}{4}\sqrt[3]{x^4} \cdot \ln x - \frac{3}{4}\int_1^2 \sqrt[3]{x} \cdot dx;$ 4. $\frac{3}{4}\sqrt[3]{x^4} \cdot \ln x _1^2 - \frac{3}{4}\int_1^2 \sqrt[3]{x} \ln x dx.$

Оцено		Примеры типовых контрольных заданий
Оценомеропр	RHTRHG	7.Область интегрирования D ограничена линиями $y=1, y=x, x+y=4$. Расставьте пределы интегрирования $\int\limits_{a}^{b} dy \int\limits_{c}^{d} f(x;y) dx$ (ответ вводить без скобок без пробелов) $a= 0$ Ответ: 1 $b= 0$ Ответ: 2 $c= 0$ Ответ: y $d= 0$ Ответ: y $d= 0$ Ответ: y или $y+4$ 8. Найдите площадь области, представленной на рисунке $1 \cdot S = \frac{\pi}{6} + \frac{\sqrt{3}}{4}$ (правильный) $1 \cdot S = \frac{\pi}{6} + \frac{\sqrt{3}}{4}$
		$1. S = \frac{\pi}{6} + \frac{\sqrt{3}}{4}$ (правильный) $2. S = \frac{\pi}{3} + \frac{\sqrt{3}}{2}$ $3. S = \frac{\pi}{12} + \frac{\sqrt{3}}{8}$
		4. $S = \frac{\pi}{6} + \frac{\sqrt{3}}{2}$ 5. $S = \frac{\pi}{6} + \frac{\sqrt{3}}{3}$
		$6. \ S = \frac{\pi}{3} + \frac{\sqrt{3}}{8}$

Оценочные мероприятия	Примеры типовых контрольных заданий
	9.Вычислите криволинейный интеграл $\int_L (y-1)dx + 5xdy$ по прямой L : $y=4x+2$ от точки $M_1(-2;9)$ до точки
	M ₂ (0;8) Ответ:46
	10. Найдите ротор векторного поля $\mathbf{F}=(-3y+6z)\mathbf{i}+(3z+4x)\mathbf{j}+(7x+6y)\mathbf{k}$ (ответ вводить без пробедов, без знаков «умножить», орты обозначить стандартно: i,j,k) rot $\mathbf{F}=_3\mathbf{i}-\mathbf{j}+7\mathbf{k}$ или $3\mathbf{i}-1\mathbf{j}+7\mathbf{k}$
	11. Найдите поток векторного поля $\mathbf{F} = (y \cdot z^2 - 2x)\mathbf{i} + (x^2z + 8y)\mathbf{j} + (x \cdot y^3 - 2z)\mathbf{k}$ через внешнюю поверхность пирамиды, ограниченной координатными плоскостями и плоскостью $5x + y + 6z = 30$ $\Pi = 600$
	12. Определите вид векторного поля $\mathbf{F} = y^2 \mathbf{i} - (x^2 + y^3) \mathbf{j} + z(3y^2 - 1) \mathbf{k}$ 1. соленоидальное, 2. потенциальное, 3. гармоническое 4. общего вида (правильный) 12. Для функции $z = z(x; y)$ известно
	$z_x'(M) = z_y'(M) = 0$ $z_{xx}''(M) = 5; \ z_{xy}''(M) = 1; \ z_{yy}''(M) = -2$ Тогда точка М
	является точкой минимума не является точкой экстремума является точкой максимума является стационарной точкой
	не является стационарной точкой

	Оценочные мероприятия	Примеры типовых контрольных заданий
4.	Дифф. Зачет	Дифференцированный зачет (Экзамен)
		Билет № Х
		1. Двойной интеграл в декартовой и полярной системах координат. 2. Вычисление потока вектора через замкнутую поверхность. Формула Остроградского - Гаусса. 3. Решить интегралы
		a) $\int \frac{x^3}{\sqrt{4-x^2}} dx$; 6) $\int_0^1 \frac{x^2}{(5x^3+2)^2} dx$.
		4.Вычислить площадь фигуры, ограниченной линиями
		$2y = \sqrt{x}$, $2xy = 1$, $x = 16$.
		5. Расставить пределы интегрирования в двойном интеграле
		$\iint\limits_{(D)} f(x;y) dx dy$ по области (D) , ограниченной линиями $y=5-x^2$, $y=1$
		6. Расставить пределы интегрирования в тройном интеграле
		$\iint\limits_{(V)} f(x;y;z) dx dy dz$ по области (V) , ограниченной поверхностями
		a) $z = \sqrt{x^2 + y^2}$; 6) $z = 2 - x^2 - y^2$
		в цилиндрической системе координат. 7. Найти поток векторного поля
		$\vec{A} = (x - y)\vec{i} + (2x + y)\vec{j} + (x^2 + 2z + 4)\vec{k}$
		через замкнутую поверхность $x^2 + z^2 = 4$, $y = 1$, $y = 3$
		8. Найти циркуляцию плоского векторного поля $\vec{A} = (x+2y)\vec{i} + (y-x)\vec{j}$
		вдоль контура $x^2 + y^2 = 9$, обходимого в положительном

Оценочные мероприятия	Примеры типовых контрольных заданий
	направлении, используя формулу Грина.
	9. Найти градиент скалярного поля
	$U(x; y; z) = \frac{x^2 y}{z - 1}$ в точке $M_0(1; -1; 2)$.
	Перечень вопросов для подготовки к сдаче дифф.зачета (экзамена)
	Неопределенный интеграл
	• Определение первообразной функции и неопределенного интеграла, его геометрический смысл, критерий правильности результата неопределенного интегрирования.
	• Таблица основных неопределенных интегралов.
	• Свойства неопределенного интеграла.
	• Свойство инвариантности основных формул интегрирования. Метод подведения под знак дифференциала.
	• Метод интегрирования по частям. Основные типы интегралов, берущихся методом интегрирования по частям.
	• Метод замены переменной в неопределенном интеграле. Основной принцип выбора подходящей подстановки. Схема проведения замены переменной.
	• Алгебраические подстановки при интегрировании иррациональных функций.
	• Тригонометрические подстановки при интегрировании иррациональных функций.
	• Схема разложения рациональной дроби на простейшие слагаемые. Интегрирование правильных и неправильных дробей.
	• Интегрирование тригонометрических функций, универсальная и тангенциальная подстановки.
	• Неберущиеся интегралы, их примеры.

Оценочные мероприятия	Примеры типовых контрольных заданий
	Определенный интеграл
	• Схема составления интегральной суммы и определенного интеграла для данной функции в данном интервале.
	• Геометрический смысл определенного интеграла.
	• Теорема существования определенного интеграла.
	• Свойства определенного интеграла.
	• Теорема о среднем значении для определенного интеграла. Среднее значение функции в интервале.
	• Теорема о производной интеграла по переменному верхнему пределу.
	• Формула Ньютона – Лейбница. Сходство и различие определенного и неопределенного интегралов.
	• Методы вычисления определенных интегралов (непосредственное, интегрирование по частям, замены переменной).
	• Определение несобственного интеграла по бесконечному промежутку, его геометрический смысл. Сходимость несобственных интегралов 1-го рода, признак сравнения.
	• Определение несобственного интеграла от неограниченной функции, его геометрический смысл. Сходимость несобственных интегралов 2-го рода, признак сравнения.
	• Формулы для вычисления площадей плоских фигур, объемов тел по площади поперечного сечения и тел вращения, длин дуг плоских кривых и площадей поверхности вращения.
	• Примеры физических задач, решения которых сводятся к вычислениям определенных или несобственных интегралов.
	Функции нескольких переменных
	• Дайте определение предела функции нескольких переменных.

Оцено меропј	
	• Сформулируйте определение частных производных для функции нескольких переменных.
	• Что называется дифференциалом функции нескольких переменных
	• В чем состоят достаточные условия дифференцируемости функции нескольких переменных?
	• Как находятся частные производные высших порядков? Сформулируйте условия равенства смешанных производных.
	• Как ищутся касательная плоскость и нормаль к поверхности?
	• Сформулируйте определение экстремума для функции нескольких переменных. Каковы необходимые условия его существования?
	• Сформулируйте достаточные условия существования экстремума для функции двух переменных
	• Приведите схему нахождения наибольшего и наименьшего значения функции в замкнутой области.
	Кратные интегралы • Схема составления интегральной суммы для функции двух переменных в данной плоской области.
	• Определение двойного интеграла и его геометрический смысл
	• Основные свойства двойного интеграла.
	• Сформулируйте теорему о среднем значении функции в плоской области, сформулируйте ее геометрический смысл.
	 Понятие повторного интеграла, выбор порядка интегрирования. Вычисление двойного интеграла в декартовой системе координат.
	• Замены переменных в двойном интеграле. Якобиан перехода от декартовых координат к полярным.
	• Схема перехода в двойном интеграле от декартовых координат к полярным.
	• Приложения двойного интеграла.

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Схема составления интегральной суммы для функции трех переменных в некоторой области трехмерного пространства.
	• Определение и запишите основные свойства тройного интеграла.
	• Теорема о среднем значении в тройном интеграле.
	• Схема вычисления тройного интеграла в декартовой системе координат.
	• Формула замены переменных в тройном интеграле. Якобиан перехода от декартовых координат к цилиндрическим и сферическим.
	• Схема перехода в тройном интеграле от декартовых координат к цилиндрическим и сферическим.
	• Приложения тройного интеграла.
	Скалярное и векторное полеОпределение скалярного поля. Примеры скралярных полей.
	• Определение производной скалярного поля по направлению, ее физический смысл. Формула вычисления производной по направлению.
	• Понятие градиента скалярного поля. Связь вектора-градиента с производной по направлению.
	• Определение векторного поля. Физические примеры.
	• Определение и формула вычисления потока векторного поля в векторной и координатной формах.
	• Понятие дивергенции векторного поля, ее физический смысл. Формула для вычисления дивергенции.
	• Формула Остроградского – Гаусса в векторной и координатной формах для вычисления потока векторного поля через замкнутую поверхность, физический смысл формулы.
	• Физический смысл циркуляции на примере векторного поля скоростей частиц текущей жидкости.
	• Определение и формула вычисления циркуляции векторного поля в векторной и координатной формах.
	• Понятие ротора векторного поля. Формула нахождения ротора.

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Формулы Стокса и Грина, их смысл.
	• Потенциальное поле, потенциал и его нахождение. Свойства потенциального поля.
	• Соленоидальное поле, понятие векторной трубки. Свойства соленоидального поля.
	• Гармоническое векторное поле и его свойства.
	• Оператор Гамильтона. Запись с помощью оператора Гамильтона дифференциальных векторных операций первого порядка.
	• Оператор Лапласа, гармонические функции.

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	В семестре студенты выполняют 5 контрольных работ, содержание которых охватывает все разделы
		дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы
		практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с
		рейтинг-планом дисциплины.
		Критерии оценки задания:
		Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в
		соответствие с рейтинг- планом, на долю верно выполненных заданий.
2.	идз	В семестре студенты выполняют 5 ИДЗ по всем разделам программы дисциплины. У каждого студента в
		группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе
		группы.
		Преподаватель обеспечивает своевременное получение студентами вариантов ИДЗ, а также
		предоставляет электронную ссылку на сборник ИДЗ. Все ИДЗ размещены в электронном курсе по
		дисциплине.
		ИДЗ выполняются в отдельной тетради, при оформлении каждого задания обязательно указывается его
		номер, приводится кратко условие каждого задания. Решение каждого задания должно быть подробным, с
		включением промежуточных расчётов, рассуждений, пояснений, с указанием использованных методов и
		формул. ИДЗ проверяет преподаватель, ведущий практические занятия. Студенты должны выполнить ИДЗ

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		до контрольной работы по теме. За каждое ИДЗ выставляются баллы, максимальный балл указывается в рейтинг-плане.
		Критерии оценки одного задания:
		Задание считается зачтенным, если выполнено более половины заданий
		Если задание не зачтено, работа возвращается студенту на доработку.
		Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку. Преподаватель может учесть исправления и добавить баллы к предыдущим
3.	Тестирование – независимый контроль ЦОКО	В семестре студенты проходят два рубежных тестирования (РТЗ и РТ4) во время конференц-недели в середине и конце текущего семестра согласно расписанию. Рубежное тестирование (РТ) проводится в компьютерной форме в on-line режиме. Продолжительность тестирования – 90 минут без перерыва. Отсчёт времени начинается с момента входа студента в Тест. Инструктаж, предшествующий тестированию, не входит в указанное время. Студент может закончить выполнение Теста до истечения отведённого времени. РТ нацелено на независимую объективную оценку знаний, умений и владений, полученных студентами за определенный промежуток обучения. Каждый вариант билета моделируется компьютером по заданным разделам химии и содержит 20 заданий. Студенты вносят ответы в компьютер, но все решения и пояснения проводят на бумаге. По окончании тестирования преподавателю выдается матрица ответов и суммарный рейтинг за тест. Обсуждение результатов тестирования проводится на консультации. Критерии оценки одного задания: • за каждое правильно выполненное задание выставляется 1 тестовый балл; • за неправильно выполненное или невыполненное задание выставляется 0 баллов; • для заданий с выбором нескольких правильных ответов, заданий на соответствие и установление последовательности предусмотрено частичное оценивание. Максимальный суммарный тестовый балл за каждое РТ составляет 15 баллов. За 2 недели до РТ студенты могут ознакомится с демонстрационным вариантом билета, который
		располагается на сайте http://exam.tpu.ru в разделе «Мероприятия», и может быть выполнен каждым студентом неограниченное число раз. Для студентов, не прошедших РТ в период проведения тестирования по уважительной причине,

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		предусмотрена возможность тестирования в резервный день, который назначается сразу после конференцнедели. При результате рубежного тестирования 6 баллов и менее, обучающимся предоставляется в период текущей промежуточной аттестации возможность повторно пройти РТ в резервный день, согласованный с Бюро расписаний ТПУ.
4.	Дифференцированный зачет.	Дифференцированный зачет осуществляется в соответствии с Положением о проведении текущего контроля и промежуточной аттестации ТПУ (как организованная процедура не проводится). Итоговый балл определяется суммированием баллов за все оценочные мероприятия текущего семестра.