ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2020 г.

ФОРМА ОБУЧЕНИЯ очная

Математика 3 Направление подготовки/ 05.03.06 Экология и природопользование спешиальность Образовательная программа Геоэкология (направленность (профиль)) Специализация Геоэкология Уровень образования высшее образование – бакалавриат Kypc 2 3 семестр Трудоемкость в кредитах 6 (зачетных единицах) Заведующий кафедрой руководитель ОМИ Трифонов А.Ю. на правах кафедры Руководитель ООП Азарова С.В. Галанов Ю.И. Преподаватель Клопотов В.Д.

1. Роль дисциплины «Математика 3» в формировании компетенций выпускника:

Элемент			рормировании компетенции		вультатов освоения (дескрипторы компетенций)
образовательной программы (дисциплина)	Семестр	Код компетенции	Наименование компетенции	Код	Наименование
		УК(У)-1	Способен осуществлять поиск, критический анализ и синтез	УК(У)-1.В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера
		y K(y)-1	информации, применять системный подход для решения	УК(У)-1.У1	Умеет решать задачи теоретического и прикладного характера
			поставленных задач	УК(У)-1.31	Знает законы естественных наук и математические методы теоретического характера
Математика 3	3		Владение базовыми знаниями в области фундаментальных разделов математики в объеме,	ОПК(У)-1.В3	Владеет математическим аппаратом комплексного и операционного исчисления, дифференциальными уравнениями и рядами для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач
		ОПК(У)-1	необходимом для владения математическим аппаратом экологических наук, обработки информации и анализа данных по экологии и природопользованию	ОПК(У)-1.У3	Умеет решать обыкновенные дифференциальные уравнения и их системы, применять аппарат гармонического и комплексного анализа при решении стандартных задач
				ОПК(У)-1.33	Знает основные определения и понятия теории дифференциальных уравнений, рядов, функции комплексного переменного и операционного исчисления

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Код достижения	Наименование раздела дисциплины	Методы оценивания
Код	Наименование	контролируемой		(оценочные мероприятия)
		компетенции		
		(или ее части)		
РД 1	Владеет		1. Обыкновенные дифференциальные	Контрольная
	методами решения обыкновенных дифференциальных		уравнения первого порядка	работа
	уравнений 1-го и высшего порядков и систем	УК(У)-1	2. Обыкновенные дифференциальные	ИДЗ.
	дифференциальных уравнений;		уравнения высших порядков и системы	Тестирование –
	методами исследования сходимости рядов, разложения	ОПК(У)-1	1 2 1	•
	функций в степенные и тригонометрические ряды;		обыкновенных дифференциальных	независимый
	методами дифференциального и интегрального исчисления		уравнений	контроль ЦОКО
	функций комплексного переменного; основными		3. Числовые ряды	

	приложениями теории вычетов; методами операционного исчисления решения обыкновенных дифференциальных уравнений и их систем		4. Функциональные ряды 5. Ряды Фурье 7. Ряды в комплексной области 8. Теория вычетов и её приложения 9.Преобразование Лапласа. Операционный метод решения дифференциальных уравнений	
РД 2	Умеет определять тип, находить общее и частное решение дифференциальных уравнений и систем линейных дифференциальных уравнений с постоянными коэффициентами; исследовать на сходимость числовые ряды; находить интервалы сходимости степенных рядов; разлагать функции в ряд Тейлора и Фурье; выполнять действия с комплексными числами и функциями; дифференцировать и интегрировать функции комплексного переменного; разлагать функции в ряд Лорана; применять теорию вычетов для нахождения интегралов; находить изображение по оригиналу и оригинал по изображению; решать задачу Коши для дифференциальных уравнений и систем с помощью операционного исчисления	УК(У)-1 ОПК(У)-1	1. Обыкновенные дифференциальные уравнения первого порядка 2. Обыкновенные дифференциальные уравнения высших порядков и системы обыкновенных дифференциальных уравнений 3. Числовые ряды 4. Функциональные ряды 5. Ряды Фурье 7. Ряды в комплексной области 8. Теория вычетов и её приложения 9.Преобразование Лапласа. Операционный метод решения дифференциальных уравнений	Контрольная работа ИДЗ. Тестирование — независимый контроль ЦОКО
РД 3	Знает классификацию дифференциальных уравнений, основные методы решения дифференциальных уравнений первого и высших порядков и систем дифференциальных уравнений; основные понятия теории числовых и функциональных рядов; ряды Тейлора, Маклорена, Фурье; понятия комплексных чисел, основных функций комплексного переменного и их свойства; дифференцирование и интегрирование функций комплексного переменного; понятия ряда Лорана, особых точек, вычетов; понятие преобразования Лапласа и его основные свойства; основные приложения операционного исчисления	УК(У)-1 ОПК(У)-1	1. Обыкновенные дифференциальные уравнения первого порядка 2. Обыкновенные дифференциальные уравнения высших порядков и системы обыкновенных дифференциальных уравнений 3. Числовые ряды 4. Функциональные ряды 5. Ряды Фурье 7. Ряды в комплексной области 8. Теория вычетов и её приложения	Контрольная работа ИДЗ. Тестирование — независимый контроль ЦОКО

	9.Преобразование Лапласа. Операцион метод решения дифференциальных уравнений	ный
--	--	-----

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности,
		необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	_
90%÷100%	18 ÷ 20	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному

70% - 89%	14 ÷ 17	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности,
			необходимые результаты обучения сформированы, качество ни одного из них не оценено
			минимальным количеством баллов
55% - 69%	11 ÷ 13	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической
			деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено
			минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

Писрете	НЬ ТИПОВЫХ З Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Контрольн ая работа	Вариант № 1 Контрольная работа по теме «Дифференциальные уравнения 1 —го порядка»
		1. Определить тип и найти общие решения данных уравнений: 1. $(y + y \ln x) dx - (x - xy) dy = 0$. 2. $y' + \frac{2x}{1 + x^2} y = \frac{2x^2}{1 + x^2}$. 3. $(xy^2 + \frac{x}{v^2}) dx + (x^2y - \frac{x^2}{v^3}) dy = 0$.
		2. Найти частные решения уравнений: 4. $xy'-y=x\operatorname{tg}\left(\frac{y}{x}\right)$, $y(1)=1$. 5. $e^{y}dx=(2y-xe^{y})dy$, $y(-1)=0$. Контрольная работа по теме «Дифференциальные уравнения высшего порядка и системы ДУ»

Оценочні мероприят	
	I) Определить тип и найти общие решения данных уравнений:
	1) $y'' = y' + x$.
	1) $y'' = y' + x$. 2) $y'' - 2y' + y = \frac{e^x}{x^2}$.
	П) Решить задачу Коши:
	1) $yy'' + (y')^2 = 0$, $y(1) = 1$, $y'(1) = 1$.
	2) $y'' - y' = e^{-x} + 2x$. $y(0) = 1$, $y'(0) = 1$.
	3) $\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = -x. \end{cases}$ $x(0) = 1; y(0) = -1.$
	<u>Числовые и функциональные ряды</u> Исследовать на сходимость ряды:
	$1. \sum_{n=1}^{\infty} \frac{1}{n+1-\cos^2 na}, 2. \sum_{n=1}^{\infty} \frac{(n+1)^2}{(n+2)^2 3^n}, 3. \sum_{n=1}^{\infty} \frac{n!(n+1)!}{(2n)!},$
	$4. \sum_{n=1}^{\infty} \left(\frac{n-1}{3n+2} \right)^n, 5. \sum_{n=1}^{\infty} \frac{(-1)^n n^4}{n^5 + 5}.$
	II. Найти интервал сходимости ряда, исследовать ряд на концах интервала:

Оценочные мероприятия	Примеры типовых контрольных заданий
	1) $\sum_{n=1}^{\infty} \frac{(0.1)^n x^{2n}}{n}$ 2) $\sum_{n=1}^{\infty} \frac{3^{2n} (n+3)^2}{(x+5)^n}$
	III. Разложить в ряд Тейлора, в окрестности точки x_0 , функцию $f(x)$: 1) $y = \ln x$, $x_0 = 1$. 2) $y = x^2 \cdot \sin 5x$, $x_0 = 0$
	3) $y = \frac{7}{1+x-12x^2}$ $x_0 = 0$, 4) $y = \frac{1}{\sqrt[3]{x}}$ $x_0 = -1$.
	Контрольная работа №3 по теме «Функции комплексного переменного» ВАРИАНТ №1
	IV. а) Найти все значения корня: $\sqrt[3]{-2}$. Результат вычислений представить в алгебраической форме.
	б) Представить в алгебраической форме: $(-1-i)^{4i}$.
	V. а) Найти коэффициент растяжения и угол поворота в точке $z_0 = 1 - i$ при отображении $\omega = z^2$. б) Проверить функцию на аналитичность: $\omega = (z^*)^2 \cdot z$.
	VI. Найти аналитическую функцию $f(z) = U + iV$ по известной действительной части и значению $f(z_0)$: $U(x,y) = x^3 - 3xy^2; f(i) = -i.$
	VII. Вычислить интеграл: $\int z^2 {\rm Im} z dz$, где L - отрезок прямой от точки $z_1=0$, до точки $z_2=1-2i$. L
	VIII. Вычислить интеграл: $\int_{L} \frac{dz}{z^3 (z-2i)^2}$, где $L: z-2i =1$.

мероприятия	еночные Примеры типовых контрольных заданий эприятия	
	Контрольная работа №3 по теме «Комплексные ряды. Вычеты»	
	ВАРИАНТ №1	
	1. Разложить функцию $f(z) = \frac{z}{(z-1)(z^2+2z-3)}$ в ряд Лорана с центром в $z_0 = 1$ в кольце $ z-1 > 4$.	
	2. Найти и построить область сходимости ряда: $\sum_{n=1}^{\infty} \frac{\cos(in)}{(z+i+1)^n} + \sum_{n=0}^{\infty} \frac{(z+i+1)^n}{(2n+i)(4+3i)^n}.$	
	3. Вычислить следующие интегралы:	
	A) $\oint_{ z-2 =4} \frac{zdz}{e^z + e^2}$ B) $\int_{ z =2} \frac{exp(1/z) + 1}{z} dz$ C) $\int_{-\infty}^{\infty} \frac{\cos \pi x dx}{x^2 + 4x + 5}$	
	Контрольная работа №3 по теме «Операционное исчисление.» ВАРИАНТ №1	
	1. Решить дифференциальное уравнение $x'+3x=e^{-2t}$, если $x(0)=0$. 2. С помощью формулы Дюамеля найти решение уравнения $x''= \operatorname{arctg} t$,	
	удовлетворяющее начальным условиям $x(0) = x'(0) = 0$.	
	3. Решить систему уравнений $\begin{cases} x'+4y+2x=4t+1; \\ y'+x-y=\frac{3}{2}t^2 \end{cases} x(0)=y(0)=0.$	

	Оценочные мероприятия	Примеры типовых контрольных заданий	
2.	ИДЗ.	Пример варианта индивидуальных заданий.	

Оценочные мероприятия	Примеры типовых контрольных заданий	
мероприяти	Дифференциальные уравнения и системы	
	1. Найти общие решения уравнений первого порядка	
	1) $y' - \frac{y}{x} = \frac{1}{\sin(y/x)}$. 2) $y' + y \cos x = \cos x$. 3) $y' + y = x\sqrt{y}$. 4) $\frac{e^{-x^2}dy}{x} + \frac{dx}{\cos^2 y} = 0$. 5) $(3x^2 + 6xy^2) dx + (6x^2y + 4y^3) dy = 0$. 6) $2(4y^2 + 4y - x) y' = 1$.	
	2. Найти частные решения уравнений	
	1) $\sqrt{y^2 + 1} dx = x y dy$, $y(1) = 0$. 2) $(x - y) dx + (x + y) dy = 0$, $y(1) = 1$. 3) $xy' - 2y = 2x^4$, $y(1) = 0$. 4) $y' + xy = (1 + x) e^{-x} \cdot y^2$, $y(0) = 1$.	
	3. Найти решения уравнений высшего порядка	
	1) $2xy'y'' = y'^2 - 1$. 2) $y'' = y' e^y$, $y(0) = 0$, $y'(0) = 1$. 3) $y'' \cos^2 x = 1$. 4) $y'' + y' = \cos x$.	
	5) $y'' + y = \frac{2 + \cos^3 x}{\cos^2 x}$. 6) $y'' + 2y' + y = x e^x + \frac{1}{x e^x}$.	
	7) $y'' + 2y' + y = (12x - 10) e^{-x}$. 8) $y'' - 3y' = 2 \sin 3x - \cos 3x$. 9) $y''' - 4y'' + 5y' - 2y = (16 - 12x)e^{-x}$. 10) $y''' + 3y'' + 2y' = 1 - x^2$.	
	11) $x^2 y'' + xy' + y = 0$, 12) $x^2 y'' - 6y = 12 \ln x$.	
	13) $\ddot{x} + 2\dot{x} + 5x = -8e^{-t}\sin 2t$, $x(0) = 2$, $\dot{x}(0) = 6$. 14) $\ddot{x} - 6\dot{x} + 25x = 9\sin 4t - 24\cos 4t$, $x(0) = 2$, $\dot{x}(0) = -2$.	
	4. Найти решения линейных систем	
	1) $\begin{cases} \dot{x} = -8x + 4y \\ \dot{y} = 3x - 4y \end{cases}$ 2) $\begin{cases} \dot{x} = 6x + 5y \\ \dot{y} = -x + 2y \end{cases}$ $y(0) = 0$ $y(0) = 1$.	
	3) $\begin{cases} \dot{x} = 5x - 2y \\ \dot{y} = 2x + y \end{cases}$ 4) $\begin{cases} \dot{x} = 6x + 4y + 2t \\ \dot{y} = -x + 10y - 1 \end{cases}$	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	<u>Числовые и функциональные ряды</u>	
	1. Исследовать на сходимость знакоположительные ряды:	
	1) $\sum_{n=1}^{\infty} \frac{(2n-1)^2}{(5n^2+1) \cdot \sqrt{n}}$ 2) $\sum_{n=1}^{\infty} \operatorname{tg}^5 \frac{3}{\sqrt{2n+7}}$ 3) $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n}$ 4) $\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n \cdot \frac{1}{5^n}$	
	3) $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n}$ 4) $\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n \cdot \frac{1}{5^n}$	
	2. Исследовать на сходимость знакочередующиеся ряды:	
	1) $\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{2n}$ 2) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{5n^2 + 3n - 1}}{7n^3 + 4}$ 3) $\sum_{n=1}^{\infty} (-1)^n \frac{6^n (n^2 - 1)}{n!}$ 4) $\sum_{n=1}^{\infty} (-1)^n \ln^{2n} \left(1 + \frac{3}{n^2}\right)$	
	3) $\sum_{n=1}^{\infty} (-1)^n \frac{6^n (n^2 - 1)}{n!}$ 4) $\sum_{n=1}^{\infty} (-1)^n \ln^{2n} \left(1 + \frac{3}{n^2} \right)$	

Оценочные мероприятия	Примеры типовых контрольных заданий	
мероприятия	3. Найти интервалы сходимости степенных рядов:	
1) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n+2}}{n+1} (x-8)^n$ 2) $\sum_{n=1}^{\infty} (-1)^n n 2^{2n} x^n$		
	4. Разложить в ряд Тейлора по степеням $(x-x_0)$ функции:	
	1) $y = \frac{1}{x^2 + 4x + 7}$, $x_0 = -2$ 2) $y = (1+x)e^{-2x}$, $x_0 = 0$	
	3) $y = \frac{\operatorname{arctg} x^3}{5x^3}$ $x_0 = 0$, 4) $y = \ln(x+2)^3$ $x_0 = 1$.	
	5. Используя разложение подынтегральной функции в степенной ряд, вычислить интегралы с точностью не менее 0,01:	
	1) $\int_{0}^{1/8} \sqrt{1-x^3} dx$ 2) $\int_{0}^{1} \sin x^3 dx$	
	Комплексные числа и функции 1. Даны числа $z_1 = -2\sqrt{3} + 2i$, $z_2 = 2 - 6i$.	
	Выполнить действия в алгебраической форме:	
	1) $3z_1 + 5z_2$, 2) $z_1 \cdot z_2$, 3) $\frac{z_1}{z_2}$.	
	2. Даны числа $z_1 = 3\sqrt{3} + 3i$, $z_2 = -1 + 4i$, $z_3 = 2 - 4i$.	
	Построить числа на комплексной плоскости и перевести в тригонометрическую и показательную форму записи. Выполнить указанные действия в показательной форме, результаты представить в алгебраической и	

Оценочные мероприятия	Примеры типовых контрольных заданий	
,	показательной форме.	
	1) $(z_2)^6$, 2) $\sqrt[3]{z_1}$, 3) $\frac{z_2 \cdot z_3}{z_2 + z_3}$.	
	3. Даны числа $z_1 = -1 - i$, $z_2 = 2 + 3i$.	
	Вычислить значения функций:	
	1) $\ln z_1$, 2) e^{z_2} , 3) $\cos z_2$.	
	Результаты представить в алгебраической форме. 4. Определить и построить на комплексной плоскости семейства линий, заданных уравнениями:	
	1) $ z = \frac{C}{\operatorname{arg} z}$, 2) $ z = C \sin(\operatorname{arg} z)$.	
	5. Найти модуль и аргумент производной функции $w = f(z)$ в точке $z = z_0$:	
	$f(z) = (1+4i)e^{-4iz}, z_0 = 1+i$	
	6. Вычислить интегралы:	
	1) $\int_{(L)} \frac{dz}{\sqrt{z}}$, $z \partial e L: \{ z = \sqrt{3}, \operatorname{Re} z > 0 \}$;	
	2) $\int_{(L)} (\operatorname{Re} z + \operatorname{Im} z) dz$, где L : отрезок $[0, 1+2i]$.	
	7. Вычислить, используя интегральную формулу Коши:	

Оценочные мероприяти	Примеры типовых контрольных заданий	
	$\iint_{(L)} \frac{z^2 - z}{z^2 (z+1)^2} dz, z \partial e \ L : \begin{cases} 1 & z = 0,5; \\ 2 & z+1 = 1; \\ 3 & z = 2. \end{cases}$	
	Операционный метод 1. Найти изображения следующих функций:	
	1) $f(t) = \cos^4 t$. 2) $f(t) = \frac{e^{at} - e^{bt}}{t}$.	
	2. Найти оригиналы функций по заданным изображениям:	
	1) $F(p) = \frac{1}{(p+1)^2(p+3)}$. 2) $F(p) = \frac{p^2}{(p^2+4)(p^2+9)}$.	
	3. Найти решение задачи Коши операционным методом:	
	1) $2x'' + 5x' = 2\cos t$, $x(0) = 0$, $x'(0) = 0$.	
	2) $x'' + 6x = t^2$, $x(0) = 0$, $x'(0) = 0$.	
	3) $x'' - 4x' + 3x = 5e^{4t}$, $x(0) = 0$, $x'(0) = 0$.	
	4. Решить уравнения, используя формулу Дюамеля:	
	$x''+16x = \begin{cases} 0, & t < 1, \\ -2, & 1 \le t \le 2, \\ 1, & 2 < t \le 3, \\ 0, & t > 3, \end{cases} x(0) = 0, x'(0) = 0.$	
	5. Найти решение систем операционным методом:	
	1) $\begin{cases} x' = 6x + 2y & x(0) = -1, \\ y' = 2x + 9y & y(0) = 0. \end{cases}$ 2) $\begin{cases} x' = 4x - 5y & x(0) = 3, \\ y' = x + 2y & y(0) = -1. \end{cases}$	

	Оценочные мероприятия	Примеры типовых контрольных заданий	
4.	Тестирова	Вопросы:	
	ние –	1. Даны комплексные числа	
	независим	$z_1 = 1 + 2i$ M $z_2 = 3i$	
	ый	$\overline{z_1}$ и $\overline{z_2}$ - комплексно сопряженные числа)	
	контроль	Установите соответствие	
	ЦОКО (РТ5 и	действие над числами:	
	РТ6)	1. $2z_1 + 3z_2$	
	110)		
		$2. z_1 \cdot z_2$	
		$3. \ \overline{z_1} \cdot \overline{z_2}$	
		4. $5 \cdot \frac{z_2}{z_1}$	
		z_1	
		$\int (z_1)^2$	
		результат действия над числами	
		1. $3i-6$	
		2. 4i-3	
		3. $2-5i$	
		4. $-6-3i$	
		5. $6+3i$	
		2. Даны комплексные числа	
		$z_1 = 2e^{i\frac{\pi}{4}}$	
		$z_2 = 7e^{-i\frac{5\pi}{6}}$	
		а) Главное значение аргумента произведения $z_1 \cdot z_2$ равно	
		б) Главное значение аргумента отношения $\frac{z_1}{z_2}$ равно	
		(Ответы дать в градусах)	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	3 . Установите соответствие функция $1 \cdot 2 \exp\left(1 + i\frac{5\pi}{6}\right)$ $2 \cdot 2 \exp\left(1 + i\frac{2\pi}{3}\right)$ $3 \cdot 2 \exp\left(1 - i\frac{\pi}{6}\right)$ $4 \cdot 2 \exp\left(1 + i\frac{\pi}{3}\right)$ $4 \cdot 1 \cdot 2 \exp\left(1 + i\frac{\pi}{3}\right)$ Найти коэффициент растяжения и угол поворота в точке $z_0 = i$ при отображении $f(z) = z^4 + \ln z$ При вводе значения x значения корней квадратных округлять до	значение функции $1 \cdot e(1+\sqrt{3} \cdot i)$ $2 \cdot e(i-\sqrt{3})$ $3 \cdot e(\sqrt{3} \cdot i-1)$ $4 \cdot e(\sqrt{3} - i)$ $5 \cdot $ Ввести два числа $k = \alpha =$
	яводе эна тення к значения корней квадратных округлять до десятых. Значения угла поворота вводить в градусах	Ввести два числа $x = y = y$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2π
4. $-\pi i/2$ 5. $-1/2$
$5e^{-4t}$
$\frac{t}{2}$

Оценочные мероприятия	Примеры типовых контрольных заданий		
	Установите соответствие оригиналов и изображений A. $f(t) = 2e^{-3t} + 4\cos 2t$ B. $f(t) = 3e^{3t} + 4\sin 2t$ C. $f(t) = 2e^{-3t} + 4sh2t$ D. $f(t) = 4e^{3t} - 4ch2t$	1. $F(p) = \frac{2}{p+3}$ 2. $F(p) = \frac{2}{p+3}$ 3. $F(p) = \frac{4}{p-3}$ 4. $F(p) = \frac{3}{p-3}$	$+\frac{8}{p^2-4}$ $-\frac{4p}{p^2-4}$
	Выберите условно сходящийся ряд, Лейбница	используя признак	1. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n^2}{(3n+2)^2}$ 2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{(n+1)!}$ 3. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{3n+2}$ 4. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n+2}$
	10.		

Оценоч меропри		Примеры типовых контрольных заданий	
	Разложить функцию $f(x) = \frac{1}{(1+x)(x-2)}$ в ряд Маклорена.	1. $f(x) = \frac{1}{2}x - \frac{1}{3}x^2 + \frac{1}{4}x^3 + \dots$ 2. $f(x) = \frac{1}{2} + \frac{1}{4}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots$ 3. $f(x) = -\frac{1}{2} + \frac{1}{4}x - \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots$	
	11.		
	Интервал (1;3) является интервалом сходимости ряд	1. $\sum_{n=1}^{\infty} n(x-2)^{n}$ 2. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n}$ 3. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$ 4. $\sum_{n=1}^{\infty} (x+1)^{n}$	
	12. Установите соответствие функция существенно особая точка		
	$f(z) = \frac{e^z}{z^2 (1-z)^2}$ z=\infty		

	Оценочные лероприятия	Примеры типовых контрольных заданий	
		$f(z) = \frac{\ln\left(\frac{1+z}{z}\right)}{z^2(z+4i)}$ $z=0$ $f(z) = \sin\left(\frac{z+1+4i}{z+4i}\right)$ $z=-4i$	
		$f(z) = \sin\left(\frac{z+1+4i}{z+4i}\right)$ z=-4i	
		$f(z) = \frac{e^{\frac{1}{z-i}}}{(z^2+1)(z-1)}$ z=i	
		z=1	
		z=4i	
		z=-i	
		Функцию $W = \frac{1}{z}$ разложили в окрестности точки $z_0 = -i$ в степенной ряд $a_0 + a_1(z+i) + a_2(z+i)^2 + a_3(z+i)^3 + \dots$ Укажите коэффициенты разложения a_0 ; a_1 ; a_2 ; a_3 (дробные ответы вводите обыкновенной несократимой дробью без пробелов, если коэффициент мнимый, i – первый множитель)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		14. 16. Решить задачу Коши операционным методом $x''+3x'=e^{-3t}$, $x(0)=0$, $x'(0)=-1$ Ответ: $x(t)=\frac{2}{9}(e^{-3t}-1)-\frac{t}{3}$	$\frac{1}{3} \cdot e^{-3t}$

Оценочны мероприяті	Примеры типовых контрольных заданий	
	Выберите сходящийся ряд, используя признак сравнения	1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$ 2. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} \cdot \sqrt{n+2}}$ 3. $\sum_{n=1}^{\infty} \frac{1}{(n^2+3) \cdot \sqrt{n+2}}$ 4. $\sum_{n=1}^{\infty} \frac{1}{3n+5}$
	16.Из уравнений высшего порядка выбрать уравнения, допуска $y' = p(y), y'' = p'_y \cdot p$ 1. $y'' + \frac{2}{1-y}(y')^2 = 0$ 2. $2yy'' - 2yy' \ln y = (y')^2$ 3. $y'' + 2y' + y = e^{-x}$ 4. $y''' \sin^4 x = \sin 2x$ 5. $y'' + 25y = \frac{1}{\sin^3 5x}$	ающие понижение порядка с помощью замены
	17. Частное решение y^* неоднородного линейного уравнения $y''-3y'+2y=x\cdot e^x$ имеет вид	1. $y^* = (Ax + B) \cdot e^x \cdot x^2$ 2. $y^* = (Ax + B) \cdot e^x \cdot x$ 3. $y^* = (Ax + B) \cdot e^{2x} \cdot x^2$ 4. $y^* = Ax \cdot e^x$

	Оценочные мероприятия	Примеры типовых контрольных заданий
5.	Экзамен	Примеры заданий на экзамен
		Экзаменационный билет 1
		Семестр 3 1. Степенные ряды. Теорема Абеля. Нахождение интервала сходимости степенного ряда. 2. Преобразование Лапласа. Оригиналы и изображения. Основные свойства операционного метода
		1. Решить задачу Коши $y' - \frac{y}{x} = 4x^4$, $y(1) = 1$ 2. Решить уравнение $(1+x^2)y'' + y' = 0$
		3. Исследовать на сходимость числовой ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n+5)\ln(2n+5)}.$
		4. Определить интервал сходимости функционального ряда $\sum_{n=1}^{\infty} (-1)^n \frac{9^n}{5^n \cdot (x-2)^n}.$
		5. Разложить в ряд Лорана функцию $f(z) = (z-3)^2 e^{-1/z}$ по степеням z
		6. Вычислить $\ln(-\sqrt{3}+i)^2$
		7. Найти коэффициент растяжения плоскости $z=x+iy$ в точке $z_0=2i-3$ при отображении $f(z)=(7i+2)\ln(2z)$

Оценочные мероприятия	Примеры типовых контрольных заданий	
	8. Hayru yang yangnara nyanyang $z = x + iy$ n gayya $z = 1$ nya arafinayayyy $f(z) = \frac{2z+3i}{z}$	
	8. Найти угол поворота плоскости $z = x + iy$ в точке $z_0 = 1$ при отображении $f(z) = \frac{2z + 3i}{iz + 4}$	
	9. Изобразить область, заданную неравенствами	
	$ z-i \le 3$, $ z+1 \ge 1$, $5\pi/6 < \arg z \le 5\pi/4$.	
	e^{iz}	
	10. Вычислить интеграл	
	11. Найти изображение для функции $f(t) = t \cdot \cosh 3t \cdot \sin 2t$	
	Теоретические вопросы для подготовки к экзамену	
	Дифференциальные уравнения и системы	
	• Какие обыкновенные дифференциальные уравнения первого порядка называются уравнениями с разделёнными и с разделяющимися переменными? Как они решаются?	
	• Какие обыкновенные дифференциальные уравнения первого порядка называются однородными? Как они решаются?	
	• Какие обыкновенные дифференциальные уравнения первого порядка называются линейными? Перечислите методы решения	
	• Как решается уравнение Бернулли?	
	• Какие обыкновенные дифференциальные уравнения первого порядка называются уравнениями в полных дифференциалах? Как они решаются?	
	• Что такое задача Коши для обыкновенных дифференциальных уравнений высших порядков? Когда она имеет единственное решение?	
	• Перечислите основные типы обыкновенных дифференциальных уравнений высших порядков, допускающих понижение порядка.	
	• Дайте определение линейного дифференциальные уравнения n - го порядка. Перечислите основные свойства частных решений однородного уравнения.	
	• Сформулируйте теоремы о вронскиане.	
	• Сформулируйте теорему о структуре общего решения неоднородного линейного дифференциальные уравнения	
	• В чем состоит метод Лагранжа отыскания частного решения неоднородного линейного дифференциальные уравнения?	
	• Схема построения фундаментальной системы решений однородного линейного дифференциальные уравнения с постоянными коэффициентами	

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Перечислите методы отыскания частных решений неоднородного линейного дифференциальные уравнения с постоянными коэффициентами
	 Дайте определение нормальной системы обыкновенных дифференциальных уравнений п-го порядка. Сформулируйте задачу Коши для такой системы. Изложите методы исключения и характеристического уравнения отыскания общего решения системы линейных однородных уравнений с постоянными коэффициентами.
	Числовые и функциональные ряды. Ряды Фурье
	• Понятие числового ряда, его суммы. Необходимый признак сходимости.
	• Свойства сходящихся рядов.
	• Сравнительный признак сходимости знакоположительных рядов. Эталонные ряды.
	• Признак Д'аламбера. Для каких видов числовых рядов он эффективен?
	• Радикальный признак Коши. Для каких видов числовых рядов он применяется?
	• Интегральный признак Коши-Маклорена. В каких случаях его следует применять?
	• Признак Лейбница сходимости знакочередующихся рядов. Как проводится оценка суммы и остатка такого ряда? Понятие абсолютной и условной сходимости.
	• Понятие функционального ряда и области его сходимости. Равномерная и абсолютная сходимость? Свойства равномерно и абсолютно сходящихся рядов.
	• Понятие степенного ряда. Теорема Абеля.
	• Интервал и радиус сходимости степенного ряда. Способы нахождения интервалов сходимости.
	• Ряды Тейлора и Маклорена для данной функции. Условия разложения функции в ряд Тейлора. Схема построения ряда Тейлора (Маклорена).
	• Ряды Маклорена для некоторых элементарных функций, интервалы их сходимости. Использование готовых разложений для получения разложения в ряд Маклорена более сложных функций. Применение степенных рядов в приближенных вычислениях.
	• Понятие тригонометрического ряда. Формулы Фурье для нахождения коэффициентов ряда (функция периодическая и заданная на интервале $[-\pi;\pi]$).
	• Теорема Дирихле об условиях разложения функции в ряд Фурье.
	• Формулы Фурье для четных и нечетных функций.
	• Формулы Фурье для случая разложения функции, заданной в произвольном интервале $[-l,l]$.
	• Разложение в ряд Фурье непериодических функций.
	Комплексные числа и функции. Теория вычетов

Оценоч меропрі	1 1 ''
	• Понятие комплексного числа, его действительной и мнимой части.
	• Алгебраическая форма записи комплексного числа. Какие комплексные числа называются равными, комплексно - сопряженными?
	• Арифметические действия над комплексными числами, записанными в алгебраической форме.
	• Геометрическое представление комплексного числа, комплексная плоскость. Модуль и аргумент комплексного числа.
	• Тринонометрическая и показательная форма записи комплексных чисел. Переход из одной формы записи комплексного числа к другой.
	• Возведение в степень и извлечение корня из комплексного числа. Формулы Муавра.
	• Понятие функции комплексного переменного. Предел и непрерывность функции.
	• Показательная, логарифмическая, тригонометрические, гиперболические и обратные тригонометрические функции комплексного переменного.
	• Дифференцирование функции комплексного переменного. Условия Коши-Римана.
	• Сопряженные гармонические функции.
	• Понятие аналитической функции комплексного переменного в области. Необходимые и достаточные условия аналитичности.
	• Геометрический смысл модуля и аргумента производной функции комплексного переменного.
	 Понятие интеграла от функции комплексного переменного и его основные свойства. Вычисление интегралов. Интегральная теорема Коши. Интегральная формула Коши и ее следствия.
	• Числовые и функциональные ряды с комплексными членами.
	 Степенные ряды. Теорема Абеля. Ряд Тейлора. Теорема о разложении аналитической функции в ряд Тейлора. Ряды Лорана, определение. Теорема Лорана о разложении аналитической функции в кольце в ряд. Понятие аналитического продолжения.
	• Особые точки и их классификация. Вычет функции в изолированной особой точке. Формулы для вычисления вычетов.
	• Основная теорема о вычетах.
	• Применение вычетов к вычислению определённых интегралов
	Операционный метод
	• Дайте определение преобразования Лапласа. Какая функция может служить оригиналом? Что называется изображением функции по Лаплассу?
	• Запишите таблицу изображений наиболее часто используемых элементарных функций.
	• Сформулируйте и запишите свойство линейности. Как оно используется для нахождения изображения по оригиналу и наоборот?
	• Сформулируйте и запишите свойства дифференцирования изображения и оригинала. Как они используются для

Оценочные	Примеры типовых контрольных заданий
мероприятия	
	нахождения изображения по оригиналу и наоборот?
	• Сформулируйте и запишите свойства интегрирования изображения и оригинала. Как они используются для нахождения изображения по оригиналу и наоборот?
	• Сформулируйте и запишите свойства запаздывания и смещения. Как они используются для нахождения изображения по оригиналу и наоборот?
	• Дайте понятие свертки функций. Как записывается изображение свертки? Как можно использовать формулу свертки для. нахождения изображения по оригиналу и наоборот?
	• Изложите схему нахождения частного решения линейных дифференциальных уравнений операционным методом.
	• Изложите схему нахождения частного решения систем линейных дифференциальных уравнений операционным методом.
	• Запишите и поясните формулу Дюамеля.
	• Понятие функций Хависайда (η -функция) и Дирака (δ -функция).

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	В семестре студенты выполняют 5 контрольных работ, содержание которых охватывает все разделы дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с рейтинг-планом дисциплины.
		Критерии оценки задания:
		Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в
		соответствие с рейтинг- планом, на долю верно выполненных заданий.
2.	идз	В семестре студенты выполняют 5 ИДЗ по всем разделам программы дисциплины. У каждого студента в группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе группы. ИДЗ размещены в электронном курсе по дисциплине.
		Решение каждого задания должно быть подробным, с включением промежуточных расчётов, рассуждений,
		пояснений, с указанием использованных методов и формул. Задание высылается отдельным файлом,
		указывается ФИО, группа.

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		Критерии оценивания
		Задание считается зачтенным, если выполнено более половины заданий
		Если задание не зачтено, работа возвращается студенту на доработку.
		Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку. Преподаватель может учесть исправления и добавить баллы к предыдущим
3.	Тестирование – независимый контроль ЦОКО	В семестре студенты проходят два рубежных тестирования (РТ5 и РТ6) во время конференц-недели в середине и конце текущего семестра согласно расписанию. Рубежное тестирование (РТ) проводится в компьютерной форме в on-line режиме. Продолжительность тестирования — 90 минут без перерыва. Отсчёт времени начинается с момента входа студента в Тест. Инструктаж, предшествующий тестированию, не входит в указанное время. Студент может закончить выполнение Теста до истечения отведённого времени. РТ нацелено на независимую объективную оценку знаний, умений и владений, полученных студентами за определенный промежуток обучения. Каждый вариант билета моделируется компьютером по заданным разделам химии и содержит 20 заданий. Студенты вносят ответы в компьютер, но все решения и пояснения проводят на бумаге. По окончании тестирования преподавателю выдается матрица ответов и суммарный рейтинг за тест. Обсуждение результатов тестирования проводится на консультации.
		Критерии оценки одного задания:
		 за каждое правильно выполненное задание выставляется 1 тестовый балл; за неправильно выполненное или невыполненное задание выставляется 0 баллов; для заданий с выбором нескольких правильных ответов, заданий на соответствие и установление последовательности предусмотрено частичное оценивание. Максимальный суммарный тестовый балл за каждое РТ составляет 15 баллов. За 2 недели до РТ студенты могут ознакомится с демонстрационным вариантом билета, который располагается на сайте http://exam.tpu.ru в разделе «Мероприятия», и может быть выполнен каждым студентом неограниченное число раз. Для студентов, не прошедших РТ в период проведения тестирования по уважительной причине, предусмотрена возможность тестирования в резервный день, который назначается сразу после конференцнедели.

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		При результате рубежного тестирования 6 баллов и менее, обучающимся предоставляется в период текущей промежуточной аттестации возможность повторно пройти РТ в резервный день, согласованный с Бюро расписаний ТПУ.
4.	Экзамен	Экзамен осуществляется в соответствии с Положением о проведении текущего контроля и
		промежуточной аттестации ТПУ На экзамене студенту выдаются билеты, включающие теоретические вопросы и практические задания. Преподаватель, проверив работу, в ходе устной беседы со студентом может задавать вопросы по самому билету, а также дополнительные вопросы по теории и практике. В итоге студент набирает итоговый балл за экзамен, максимально 20 баллов. Оценка за дисциплину формируется как итоговая за работу в семестре и экзамен в соответствие с принятой шкалой оценивания.
		Студенты, не сдавшие экзамен в сессионный период, могут пересдать его в периоды ликвидации задолженностей в соответствие с действующей процедурой.
		В соответствии с приказами от 25.07.2018 г. №58/од Об утверждении и введении в действие «Системы оценивания результатов обучения в Томском политехническом университете» и №59/од Об утверждении и введении в действие новой редакции «Положения о проведении текущего контроля и промежуточной аттестации в ТПУ» экзамен по физике проводится в устной форме. Студенту выдается экзаменационный билет, содержащий теоретические вопросы, качественные и количественные задачи. Каждый вопрос билета оцениваться баллом (всего по билету 20 баллов). Экзамен проходит в устной форме. Согласно шкалы оценивания результатов
		18-20 баллов (отлично) - всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы; 14-17 баллов (хорошо) - достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы; 11-13 баллов (удовлетворительно) - приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы; 0-10 баллов (неудовлетворительно) - результаты обучения не соответствуют минимально достаточным требованиям. Результаты промежуточной аттестации оформляются ведомостью и вносятся в зачетную книжку
		обучающегося.