ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2017 г.

ФОРМА ОБУЧЕНИЯ очная

	Математика 1.1					
Направление подготовки/ специальность	15.03.01 Машиностроение					
Образовательная программа (направленность (профиль))	Машиностроение					
Специализация	Машины и технология высокоэффективных процессов обработки материалов					
Уровень образования	высшее образование - бакалавриат					
Курс	1 семестр 1					
Трудоемкость в кредитах (зачетных единицах)	8					
Заведующий кафедрой - руководитель отделения на правах кафедры	Трифонов А.Ю					
Руководитель ООП	Ефременков Е.А.					
Преподаватель	Янущик О.В.					

1. Роль дисциплины «Математика 1.1» в формировании компетенций выпускника:

Элемент образовательной	Семестр	Код компетенции	Наименование компетенции	Результаты освоения ООП	Составляющие результатов освоения (дескрипторы компетенций)	
программы (дисциплина, практика, ГИА)					Код	Наименование
	1	УК(У)-1	Способен осуществлять поиск, критический анализ и синтез информации, применять	P1, P3, P4, P5, P9 P1, P4, P6, P8, P9	УК(У)-1.31	Знает законы естественных наук и математические методы теоретического характера
			умеет использовать основные законы естественной дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования		УК(У)-1.У1	Умеет решать задачи теоретического и прикладного характера
					УК(У)-1.В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера
Математика 1.1		ОПК(У)-1			ОПК(У)-1.31	Знает основные понятия и теоремы линейной и векторной алгебры, аналитической геометрии, теории линейных пространств, дифференциального исчисления функции одной переменной
					ОПК(У)-1.У1	Умеет применять изученные методы алгебры и анализа для решения стандартных задач
					ОПК(У)-1.В1	Владеет математическим аппаратом алгебры и дифференциального исчисления функции одной переменной для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Код индикатора	Наименование раздела	Методы оценивания
Код	Наименование	достижения	дисциплины	(оценочные мероприятия)
		контролируемой		
		компетенции (или ее		
		части)		

РД 1	Владеет основными понятиями и методами линейной алгебры, аналитической геометрии и дифференциального исчисления функции одной и нескольких переменных	УК(У)-1 ОПК(У)-1	1. Линейная алгебра 2. Векторная алгебра 3.Аналитическая геометрия 4.Введение в анализ 5.Дифференциальное исчисление функции одной переменной 6. Дифференциальное исчисление функции нескольких переменных	Контрольная работа ИДЗ. Экзамен
РД 2	Умеет вычислять определители, выполнять действия с матрицами, исследовать и решать системы линейных алгебраических уравнений; производить действия над векторами; геометрически и аналитически представлять прямую и плоскость; устанавливать взаимное расположения прямых и плоскостей; приводить общие уравнения кривых и поверхностей к каноническому виду и строить их; находить пределы функций и числовых последовательностей; дифференцировать и исследовать функции одного и нескольких переменных	УК(У)-1 ОПК(У)-1	1. Линейная алгебра 2. Векторная алгебра 3.Аналитическая геометрия 4.Введение в анализ 5.Дифференциальное исчисление функции одной переменной 6. Дифференциальное исчисление функции нескольких переменных	Контрольная работа ИДЗ. Экзамен
РД 3	Знает алгебру матриц, основные характеристики матриц, их определения и свойства; методы решения систем линейных алгебраических уравнений; методы векторной алгебры; свойства и уравнения основных геометрических образов ;основные положения теории пределов; правила и методы нахождения производных функций одной и нескольких переменных, схему полного исследования функции	УК(У)-1 ОПК(У)-1	1. Линейная алгебра 2. Векторная алгебра 3.Аналитическая геометрия 4.Введение в анализ 5.Дифференциальное исчисление функции одной переменной 6. Дифференциальное исчисление функции нескольких переменных	Контрольная работа ИДЗ. Экзамен

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка – максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля*

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности
70% ÷ 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности
55% ÷ 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности
0% ÷ 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена*

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	$36 \div 40$	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности
70% ÷ 89%	28 ÷ 35	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности
55% ÷ 69%	22 ÷ 27	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности
0% ÷ 54%	0 ÷ 21	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1	Контрольная работа	Контрольная работа «Линейная алгебра» ВАРИАНТ №1
		1. Дан определитель $ \begin{vmatrix} 2 & 4 & -3 & 1 \\ -1 & 1 & 0 & 1 \\ 3 & 2 & 4 & 0 \\ 0 & -1 & 1 & 3 \end{vmatrix} $

Оценочные мероприятия	Примеры типовых	контрольных заданий
	а) Запишите разложение данного определителя по четвёр	тому столбцу;
	б) вычислите определитель, получив предварительно нул	и в какой – либо строке или столбце.
	2. Решить систему уравнений методом обратной матриць	$\begin{cases} x + 2y - z = -1, \\ 3y - z = 1, \\ x + 4y + z = 5. \end{cases}$
	Значение x вычислить также методом Крамера.	
	3. Исследовать систему на совместность и решить методо	ом Гаусса
	$\begin{cases} x_2 + x_3 + x_4 = 1 \\ x_1 - x_3 - x_4 = 2 \\ x_1 + x_2 - x_4 = 3 \end{cases}$	
	$\begin{cases} x_1 + x_2 & -x_4 = 3 \\ x_1 + x_2 + x_3 & = 4 \end{cases}$	
	4. Дана система однородных линейных уравнений	$\begin{cases} 2x_1 + x_2 + 3x_3 + 2x_4 = 0, \\ 2x_1 + x_2 + 2x_3 + x_4 = 0, \\ 2x_1 + x_2 + 5x_3 + 4x_4 = 0, \\ 2x_1 + x_2 + 4x_3 + 3x_4 = 0. \end{cases}$
	а) Докажите, что система имеет нетривиальные решения; б) Найдите общее решение системы; в) найдите фундаментальную систему решений.	
	. При каких значениях параметра λ система линейных у	равнений
	с расширенной матрицей $\begin{pmatrix} 2 & 1 & 1 & & 4 \\ 1 & \lambda & 1 & & 3 \\ 1 & 2\lambda & 1 & & 4 \end{pmatrix}$ со	
		теме «Векторная алгебра» АНТ №1
	I. Даны четыре вектора: $\vec{a} = \{4,5,2\}; \vec{b} = \{3,0,1\}; \vec{a}$	$\vec{c} = \{-1,4,2\}; \vec{d} = \{5,7,8\}.$

Оценочные мероприятия	Примеры типовых контрольных заданий
	1. Доказать, что векторы $\vec{a}, \vec{b}, \vec{c}$ образуют базис и найти разложение вектора \vec{d} в этом базисе.
	2. Найти косинус угла между векторами \vec{a} и \vec{b} .
	3. Найти длину вектора $\vec{g} = \vec{a} + 2\vec{b} + 3\vec{c}$.
	\mathbf{H}_{1} However, we want $A(1,2;0)$ $B(4,1;2)$ $C(2;0;1)$ $D(-4,2;5)$
	II. Даны четыре точки: $A(1;3;0)$, $B(4;1;2)$, $C(3;0;1)$, $D(-4;3;5)$. 4. Найти объём пирамиды $ABCD$ и длину высоты , опущенной из вершины D на грань ABC .
	5. Найти проекцию вектора \overrightarrow{AB} на ось вектора \overrightarrow{CD} .
	\longrightarrow \longrightarrow \longrightarrow
	6. Найти координаты вектора $[(BC + AB), CB]$.
	III. Параллелограмм построен на векторах $\vec{a} = \vec{p} + 4\vec{q}$, $\vec{b} = \frac{1}{2}(\vec{p} - \vec{q})$, где $ \vec{p} = 4$, $ \vec{q} = 2$, $(\vec{p} \wedge \vec{q}) = \frac{\pi}{3}$.
	Определить: а) косинус тупого угла между диагоналями; б) длину высоты, опущенной на сторон
	Контрольная работа по теме «Аналитическая геометрия» ВАРИАНТ №1 1. Определить при каких значениях <i>a</i> прямая (a+2)x + (a²-9)y + 3a² - 8a + 5 = 0 параллельна оси ОХ. 2. Составить уравнения прямых, параллельных прямой 3x - 4y - 10 = 0 и отстоящих от нее на расстояние d=3 3. Даны вершины треугольника A(2,6), B(4,-2), C(-2,-6). Составить уравнение высоты из вершины A и уравнение медианы из вершины C.
	4. Привести к каноническому виду, назвать и построить кривые: a) $16x^2 + 25y^2 + 32x - 100y - 284 = 0$; б) $y^2 - 4y - 20x + 24 = 0$.
	5. Из общих уравнений прямой : $2x + y - 3z - 9 = 0$, $-2x + 3z + 4 = 0$ получить канонические и параметрическое уравнения прямой.
	6. Найти проекцию точки $A(1,2,0)$ на плоскость $8x + 6y + 8z - 25 = 0$.
	7. Построить тело, ограниченное поверхностями $x^2 = z$, $x + y = 2$,

Оценочные мероприятия	Примеры типовых контрольных заданий
 	$y \ge 0, z \ge 0.$
	Контрольная работа по теме «Введение в анализ»
	Контрольная разота по теме «Оведение в анализ»
	I. Вычислить пределы
	1. $\lim_{n \to \infty} \frac{\sqrt{n^2 - 4n}}{\sqrt[3]{2n^3 + 1}};$ 2. $\lim_{n \to \infty} \frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}}{n - 1};$
	3. $\lim_{x \to 1} \frac{\sqrt{1+x^2}}{2x}$; 4. $\lim_{x \to \infty} \frac{6x^2 + 2x}{3x^2 + 1}$;
	5. $\lim_{x \to 2} \frac{\sqrt{x^2 - 3} - 1}{x - 2}$; 6. $\lim_{x \to 0} \frac{x^2}{1 - \cos x}$;
	7. $\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^{\frac{x^2+1}{x}}$; 8. $\lim_{x \to 0} \frac{\ln(x^2+2) - \ln 2}{x^2}$;
	9. $\lim_{x \to 0} \frac{e^{2x} - e^x}{x}$; 10. $\lim_{x \to 2} \frac{\sin(2 - x)}{\sqrt{2x} - 2}$.
	II. Определить порядок б. м. $\alpha(x)$ при $x \to 0$ относительно x :
	1. $\alpha(x) = \ln(1 + \sqrt[3]{x^2 \cdot \lg x})$, 2. $\alpha(x) = \sqrt{2x+1} - 1$.
	III. Найти точки разрыва функции, указать их характер. Построить график функции в окрестности точек разрыва:

Оценочные мероприятия	Примеры типовых контрольных заданий
	1. $f(x) = \begin{cases} 0, ecnu \ x < 0, \\ x^2, ecnu \ 0 \le x < 1, \\ x + 2, ecnu \ x \ge 1. \end{cases}$ 2. $y = \frac{\frac{1}{2^{1-x}}}{\frac{1}{1-x}}$, 3. $y = \frac{1}{x^2 - 4}$.
	Контрольная работа по теме «Дифференциальное исчисление функции одного переменного» ВАРИАНТ №1
	I. Найти производные следующих функций: \sqrt{x}
	1. $y = (e^{\cos x} + 3x)^2$; 2. $3^x + 3^y = x - 2y$; 3. $y = (\operatorname{tg} 2x)^{\cot (\sqrt{\frac{x}{2}})}$;
	II. Найти вторую производную $\frac{d^2y}{dx^2}$:
	1. $y = \frac{x^2}{x^2 - 1}$, 2. $\begin{cases} x = \cos(t/2), \\ y = t - \sin t. \end{cases}$ 3. $y = \sin(x - y)$ III Пользуясь правилом Лопиталя найти пределы:
	1. $\lim_{x \to 1} \left(\frac{x^2}{x - 1} - \frac{1}{\ln x} \right)$ 2. $\lim_{x \to 1 - 0} (\sin \pi x)^{\cos \frac{\pi x}{2}}$
	IV Провести полное исследование функции $y = xe^{-\frac{1}{x}}$ и построить её график
	Контрольная работа по теме «Дифференциальное исчисление ФНП» ВАРИАНТ №1
	 Найти и построить область определения функции:

Оценочные мероприятия	Примеры типовых контрольных заданий
	$z = \sqrt{x} \ln(1 - x - y);$
	II. Найти указанные производные
	$u = (xy)^{z+1}$. $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, $\frac{\partial^2 u}{\partial x \partial z} = ?$
	III. Проверить, удовлетворяет ли функция $u = x^2 F\left(\frac{x}{z}, \frac{y}{x}\right)$ уравнению $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2u$.
	IV. Составить уравнение нормали к поверхности $x^2 - 2x + 6y - z^2 = 4$ параллельно прямой
	$\frac{x}{1} = \frac{y-2}{3} = \frac{z-1}{4} .$
	V. Найти наибольшее и наименьшее значение функции: $z = 8x + y - xy$ в замкнутой области, ограниченной линиями $x = 0, y = 0, x + y = 10$.
2. ИДЗ.	Пример варианта индивидуальных заданий.

Оценочные мероприятия	Примеры типовых контрольных заданий
Одено ниме жероприятия	Линейная алгебра
	1. Вычислить определители
	a) $ \begin{vmatrix} 12 & 3 & -1 & 2 \\ 1 & 1 & 0 & -1 \\ -4 & 2 & 4 & -2 \\ -2 & 0 & 1 & -1 \end{vmatrix} $ b) $ \begin{vmatrix} -7 & -3 & 2 & 4 \\ -2 & 0 & 1 & 1 \\ -4 & 2 & 1 & 3 \\ -3 & -2 & 2 & 1 \end{vmatrix} $
	2 . Найти матрицу X из уравнения. Сделать проверку
	$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 11 & -15 \\ 2 & -8 & 3 \\ 11 & 7 & 0 \end{pmatrix}.$
	 Решить системы линейных уравнений: а) методом Крамера, b) матричным методом
	a) $\begin{cases} 3x + 4y - 2z = 26 \\ x - y + 3z = -2 \\ 3x - 3y + 5z = -2 \end{cases}$ b) $\begin{cases} x + 5y - z = 5 \\ 3x + 8y + z = 7 \\ 4x - 6y + z = 10 \end{cases}$
	4. Решить системы методом Гаусса
	a) $\begin{cases} x_2 & -3x_3 + 4x_4 = -5 \\ x_1 & -2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 & -5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 & = 5 \end{cases}$
	$b) \begin{cases} x_1 + 3x_2 + 5x_3 - 4x_4 & = 1 \\ x_1 + 3x_2 + 2x_3 - 2x_4 + x_5 & = -1 \\ x_1 - 2x_2 + x_3 - x_4 - x_5 & = 3 \\ x_1 - 4x_2 + x_3 + x_4 + x_5 & = 3 \\ x_1 + 2x_2 + x_3 - x_4 + x_5 & = -1 \end{cases}$
	c) $\begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \\ 3x_1 + x_2 - x_3 + x_4 = 0 \end{cases}$

	Оценочные мероприятия	Примеры типовых контрольных заданий	
3.	Тестирование –	Вопросы:	
	независимый контроль	1. С помощью элементарных преобразований расширенная матрица системы линейных	
	ЦОКО (РТ1 и РТ2)	$\begin{pmatrix} 1 & -1 & 2 & 0 & 1 & & 0 \end{pmatrix}$	
		уравнений приведена к виду $\begin{vmatrix} 0 & 0 & 0 & 0 & 1 \end{vmatrix}$ Выберите верные утверждения, если A —	
		$\begin{pmatrix} 0 & 1 & 0 & 2 & 0 & & 0 \end{pmatrix}$	
		основная матрица системы, \overline{A} – расширенная матрица системы.	
		1. $rang(A) = 2$	
		2. $rang(A) = 3$	
		3. $rang(A) = 2$	
		4. $rang(A) = 3$	
		5. система совместна	
		6. система несовместна	
		2. Высота треугольника ABC , опущенная из вершины C , если $A(3;1;2)$, $B(5;-3;6)$, $C(3;0;4)$ равна	
		3 . Расстояние между фокусами эллипса $5x^2+9y^2-30x+18y+9=0$ равно	
		4 . Косинус острого угла между прямыми $\frac{x+4}{10} = \frac{y-1}{-2} = \frac{z+5}{-11}$ и $\begin{cases} x = 9t+1, \\ y = 6t, \\ z = 3-2t \end{cases}$	
		5. Установите соответствие между функцией и её дифференциалом	
		функция производная	
		$y = \sqrt[3]{\sin x}$ $dy = \frac{\cos x}{3\sqrt[3]{\sin^2 x}} dx$	

$y = \sqrt{\sin x} \qquad dy = \frac{\cos x}{2\sqrt{\sin x}} dx$ $y = \frac{1}{\sqrt[3]{\sin x}} \qquad dy = -\frac{\cos x}{2\sqrt{\sin^3 x}} dx$ $y = \frac{1}{\sqrt[3]{\sin x}} \qquad dy = -\frac{\cos x}{3\sqrt[3]{\sin^4 x}} dx$ $dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$ $dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$ $dy = \frac{1}{2\sqrt{\sin x}} dx$ $dy = \frac{1}{2\sqrt{\sin x}} dx$ $dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$ $dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$ $dy = \frac{1}{2\sqrt{\sin x}} dx$ $dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$ $dy = \frac{1}{2\sqrt{\sin x}} dx$ $dx = \frac$	Оценочные мероприятия	Примеры типовых контрольных заданий	
$y = \frac{1}{\sqrt[3]{\sin x}} \qquad dy = -\frac{\cos x}{\sqrt[3]{\sin x}} dx$ $dy = \frac{\cos x}{\sqrt[2]{\sin x}} dx$ $dy = \frac{1}{\sqrt{\sin x}} dx$ 6. Определите порядок малости бесконечно малой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$ относительно $\frac{1}{x}$ при $x \to \infty$ $K = \frac{1}{x}$ 7. Функция $y = 6x \cdot e^{-2x}$ убывает для значений $x = \frac{1}{x}$ $\frac{1 \cdot x \in (-\infty; 1/2)}{2 \cdot x \in (1/2; +\infty)}$ $\frac{3 \cdot x \in (-\infty; -1/2) \cup (1/2; +\infty)}{4 \cdot x \in (-1/2; +\infty)}$		$y = \sqrt{\sin x}$	$dy = \frac{\cos x}{2\sqrt{\sin x}} dx$
$dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$ $dy = \frac{1}{2\sqrt{\sin x}} dx$ 6. Определите порядок малости бесконечно малой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$ относительно $\frac{1}{x}$ при $x \to \infty$ К= 7. Функция $y = 6x \cdot e^{-2x}$ убывает для значений $x = \frac{1}{x} \cdot x \in (-\infty; 1/2)$ 2. $x \in (1/2; +\infty)$ 3. $x \in (-\infty; -1/2) \cup (1/2; +\infty)$ 4. $x \in (-1/2; +\infty)$		$y = \frac{1}{\sqrt{\sin x}}$	$dy = -\frac{\cos x}{2\sqrt{\sin^3 x}} dx$
$dy = \frac{1}{2\sqrt{\sin x}} dx$ 6. Определите порядок малости бесконечно малой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$ относительно $\frac{1}{x}$ при $x \to \infty$ $K = $ 7. Функция $y = 6x \cdot e^{-2x}$ убывает для значений $x = 0$ $1 \cdot x \in (-\infty; 1/2)$ $2 \cdot x \in (1/2; +\infty)$ $3 \cdot x \in (-\infty; -1/2) \cup (1/2; +\infty)$ $4 \cdot x \in (-1/2; +\infty)$		$y = \frac{1}{\sqrt[3]{\sin x}}$	$dy = -\frac{\cos x}{3\sqrt[3]{\sin^4 x}} dx$
6. Определите порядок малости бесконечно малой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$ относительно $\frac{1}{x}$ при $x \to \infty$ $K =$			$dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$
∞ K= 7. Функция $y=6x\cdot e^{-2x}$ убывает для значений \mathcal{X} $1\cdot_{x\in(-\infty;1/2)}$ $2\cdot_{x\in(1/2;+\infty)}$ $3.\ x\in(-\infty;-1/2)\cup(1/2;+\infty)$ $4.\ x\in(-1/2;+\infty)$			$dy = \frac{1}{2\sqrt{\sin x}}dx$
$K=$ 7. Функция $y=6x\cdot e^{-2x}$ убывает для значений \mathcal{X} $1\cdot_{x\in(-\infty;1/2)}$ $2\cdot_{x\in(1/2;+\infty)}$ $3. \ x\in(-\infty;-1/2)\cup(1/2;+\infty)$ $4. \ x\in(-1/2;+\infty)$		6. Определите порядок малости бесконечно м	
$ \begin{array}{ccc} 1 \cdot x \in (-\infty; 1/2) \\ 2 \cdot & x \in (1/2; +\infty) \\ 3 \cdot & x \in (-\infty; -1/2) \cup (1/2; +\infty) \\ 4 \cdot & x \in (-1/2; +\infty) \end{array} $		K=	й X
3. $x \in (-\infty; -1/2) \cup (1/2; +\infty)$ 4. $x \in (-1/2; +\infty)$		$1 \cdot x \in (-\infty; 1/2)$	
4. $x \in (-1/2; +\infty)$		3. $x \in (-\infty; -1/2) \cup (1/2; +\infty)$	
		4. $x \in (-1/2; +\infty)$	
8. Для функции $z = z(x; y)$ известно			

Оценочн	ые мероприятия		Примеры типовых контрольных задан	ий
	z'_x	$(M) = z_y'(M) = 0$		
	z_x''	$z'_{x}(M) = 5; \ z''_{xy}(M) = 1; \ z''_{yy}(M)$	M) = -2	
	То	гда точка М		
		пяется точкой минимума		
		является точкой экстремума		
		пяется точкой максимума		
		пяется стационарной точкой	<u>.</u>	
4. Экзамен	не	является стационарной точко	<u>и</u> Примеры заданий на экзам	4011
- Экзамен			примеры задании на экзам	1ен
		ТПУ	Экзамен	Курс 1
			Вариант 1	
		Сформулировать и доказать Уравнения прямой в простра		
	3.	Найдите пределы: a) $\lim_{x\to\infty} \frac{2^{x+1}}{2^{x-1}}$	$\frac{+3^{x-2}}{1-3^x}$. B) $\lim_{x \to +0} xe^{\frac{1}{x}}$.	
	4.	Найдите все частные производнь	не первого порядка функции $u=\sqrt{2}$	$2x^2-3y$.
	5.	Определите точки перегиба и инте	рвалы выпуклости и вогнутости фуг	нкции $y = x^{\frac{1}{5}}e^x$.
		6. Дана система линейных у	равнений $\begin{cases} x_1 - x_2 - 2x_3 + x \\ -x_1 + 2x_2 - x_3 + x \\ x_1 + x_2 - x_4 \end{cases}$	$x_4 - x_5 = -2$, + $x_4 - x_5 = -2$, найдите общее решение + $2x_5 = -1$.
		системы		
	7.	Составьте уравнение плоско параллельно оси <i>Ox</i> .	сти, которая проходит через	точки $M_1(7, 2, -3)$ и $M_2(5, 6, -4)$
	8.	Приведите уравнение кривой	к каноническому виду и пост	гройте кривую

Оценочные мероприятия	Примеры типовых контрольных заданий	
	$16x^2 - 9y^2 - 64x + 18y = 89.$	
	Экзаменационный билет 1	
	· ·	
	$a^{3\sin 2x} = 1$	
	1 . Найти предел $\lim_{x\to 0} \frac{e^{3\sin 2x} - 1}{2x^4 + 5x}$.	
	3.	
	2 . Записать уравнения всех асимптот кривой $y = x^3 \ln x$.	
	3 . Исследовать на экстремум функцию $y = \ln \sqrt{x^2 + 1} + \operatorname{arctg} x$.	
	$y = \ln \sqrt{x} + 1 + arctg x$.	
	4 . Найти и изобразить область определения функции $z = \ln x + \sqrt{x-y}$	
	5 . Исследовать на экстремум функцию $z(x; y) = x^2 - y^3 - 3x + 6y$	
	Экзаменационный билет № <i>X</i>	
	1. Скалярное произведение векторов, его свойства и применение.	
	2. Взаимное расположение прямой и плоскости в пространстве.	
	-3 2 5	
	3. Вычислить определитель $\begin{vmatrix} -3 & 2 & 5 \\ -2 & 7 & 11 \\ -1 & -6 & 4 \end{vmatrix}$.	
	$\begin{vmatrix} -1 & -6 & 4 \end{vmatrix}$	
	4. Найти косинус угла при вершине A и площадь треугольника с вершинами в точках	
	A(3;-4;1), B(-2;8;0), C(-1;5;-2).	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	5.Записать уравнение прямой, проходящей через точку $M(-9;4)$ перпендикулярно прямой $\frac{x-1}{5} = \frac{y+2}{-7}.$ 6.Найти координаты точки пересечения прямой $\begin{cases} x = 2t+7 \\ y = -t+4 \\ z = 5t-2 \end{cases}$ и плоскости $3x+9y-3z+1=0.$	
	7. Построить a) кривую $x = -2 - \sqrt{2 - 3y}$; б) поверхность $2x^2 + 4y^2 - 3z + 1 = 0$.	
	 Экзаменационные вопросы Что такое определитель? При каких преобразованиях величина определителя не меняется В каких случаях определитель равен нулю? Что следует из равенства определителя нулю? Дайте определение минора и алгебраического дополнения элемента определителя. Сформулируйте правило вычисления определителя. Как осуществляются линейные операции над матрицами? Как перемножаются две матрицы? Свойства произведения матриц. Какова схема нахождения обратной матрицы? Дайте определения решения системы линейных алгебраических уравнений. Расшифруйте понятия «совместная», «несовместная», «определённая», «неопределённая» системы. Напишите формулы Крамера. В каком случае они применимы? Что называется рангом матрицы? Как он находится? Сформулируйте теорему Кронекера – Капелли. При каких условиях система линейных алгебраических уравнений имеет множество решений? Когда она имеет единственное решение? Опишите метод Гаусса решения систем линейных уравнений. Какие неизвестные называются свободными, а какие базисными? Какие особенности решения однородных систем линейных алгебраических уравнений Вы знаете? Как строится фундаментальная система решений? Как выполняются линейные операции над векторами? Каковы свойства этих операций? Как выполняются линейные операции над векторами? Каковы свойства этих операций? Какие вектора называются линейно зависимыми, а какие линейно независимыми? 	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	• Что такое базис? Какие вектора образуют базис на плоскости и в пространстве?	
	• Какой базис называют декартовым?	
	• Что такое координаты вектора?	
	• Что называется скалярным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?	
	• Что называется векторным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?	
	• Что называется смешанным произведением векторов? Каковы его свойства? Для решения каких задач и как оно может быть использовано?	
	• Запишите в векторной и координатной формах условия коллинеарности, ортогональности и компланарности векторов.	
	• Прямая линия на плоскости, её общее уравнение	
	• Дайте понятие нормального и направляющего векторов прямой на плоскости, углового коэффициента.	
	• Запишите различные виды прямой и укажите геометрический смысл параметров уравнения.	
	• Запишите условия параллельности и перпендикулярности прямых на плоскости в случае различных видов уравнений прямых.	
	• Как найти точку пересечения прямых на плоскости?	
	• Как вычисляется расстояние от точки до прямой на плоскости?	
	• Дайте определение эллипса и запишите его каноническое уравнение.	
	• Дайте определение гиперболы и запишите её каноническое уравнение	
	• Дайте определение параболы и запишите её каноническое уравнение	
	 Изложите схему приведения общего уравнения кривой второго порядка к каноническому виду. 	
	• Дайте понятие полярной системы координат.	
	• Опишите параметрический способ построения линий на плоскости	
	• Плоскость, её общее уравнение	
	• Как определяется взаимное расположение плоскостей? Запишите условия параллельности	
	и перпендикулярности плоскостей.	
	• Как вычисляется расстояние от точки до плоскости?	
	• Запишите различные виды уравнений прямой в пространстве и поясните смысл	
	параметров, входящих в уравнения.	
	• Изложите схему приведения общих уравнений прямой к каноническому виду.	
	• Как определить взаимное расположение прямых в пространстве?	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	• Как вычисляется расстояние от точки до прямой в пространстве?	
	• Как определить взаимное расположение прямой и плоскости?	
	• Как ищется точка пересечения прямой и плоскости?	
	• Назовите поверхности второго порядка и напишите их канонические уравнения.	
	• Сформулируйте понятие предела числовой последовательности	
	• Сформулируйте понятие предела функции одной переменной	
	• Что такое односторонние пределы функции в точке?	
	• Сформулируйте понятия бесконечно малой и бесконечно большой при $x \to a$ функции.	
	• Первый и второй замечательные пределы	
	 Как сравниваются бесконечно малые величины? Что такое относительный порядок малости? 	
	• Какие бесконечно малые называются эквивалентными? Приведите примеры эквивалентных бесконечно малых.	
	• Какими свойствами обладают функции, непрерывные на замкнутом промежутке?	
	• Что понимают под точкой разрыва функции? Какие разрывы различают?	
	• Как связаны понятия непрерывности и дифференцируемости функции в точке?	
	 Запишите правила дифференцирования обратной и сложной функций. Запишите правила дифференцирования неявно заданной функции и функции, заданной параметрически. 	
	• Что такое дифференциал функции? Каков его геометрический смысл?	
	• Какими свойствами обладают дифференцируемые функции?	
	• Как находятся дифференциалы и производные высших порядков?	
	• Формула Тейлора	
	• Что такое точка экстремума функции? Какие точки экстремума бывают?	
	• Необходимое условие существования экстремума для дифференцируемой функции	
	• Достаточные условия существования экстремума	
	• Схема исследования на экстремум функции одного переменного	
	• Схема нахождения наибольшего и наименьшего значения функции на замкнутом	
	промежутке.	
	• Дайте определение выпуклости и вогнутости кривой на промежутке.	
	• Какие точки называются точками перегиба?	
	• Что называется асимптотой графика функции? Какие асимптоты различают?	
	• В чем состоит правило Лопиталя? Для раскрытия каких неопределённостей оно применяется?	

Оценочные мероприятия	Примеры типовых контрольных заданий	
	 Дайте определение предела функции нескольких переменных. Сформулируйте определение частных производных для функции нескольких переменных. Что называется дифференциалом функции нескольких переменных В чем состоят достаточные условия дифференцируемости функции нескольких переменных? Как находятся частные производные высших порядков? Сформулируйте условия равенства смешанных производных. Как ищутся касательная плоскость и нормаль к поверхности? Сформулируйте определение экстремума для функции нескольких переменных. Каковы необходимые условия его существования? Сформулируйте достаточные условия существования экстремума для функции двух переменных Приведите схему нахождения наибольшего и наименьшего значения функции в замкнутой области. 	
	области.	

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания	
1.	Контрольная работа	В семестре студенты выполняют 6 контрольных работ, содержание которых охватывает все дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с рейтинг-планом дисциплины. Критерии оценки задания:	
		• Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в соответствие с рейтинг- планом, на долю верно выполненных заданий.	
2.	идз	В семестре студенты выполняют 8 ИДЗ по всем разделам программы дисциплины. У каждого студента в группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе группы. Преподаватель обеспечивает своевременное получение студентами вариантов ИДЗ, а также предоставляет электронную ссылку на сборник ИДЗ. Все ИДЗ размещены в электронном курсе по дисциплине. ИДЗ выполняются в отдельной тетради, при оформлении каждого задания обязательно указывается его	

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		номер, приводится кратко условие каждого задания. Решение каждого задания должно быть подробным, с включением промежуточных расчётов, рассуждений, пояснений, с указанием использованных методов и формул. ИДЗ проверяет преподаватель, ведущий практические занятия. Студенты должны выполнить ИДЗ до контрольной работы по теме. За каждое ИДЗ выставляются баллы, максимальный балл указывается в рейтинг-плане.
		Критерии оценки одного задания:
		Задание считается зачтенным, если выполнено более половины заданий
		Если задание не зачтено, работа возвращается студенту на доработку.
		Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку. Преподаватель может учесть исправления и добавить баллы к предыдущим
3.	Экзамен	«Положение о проведении текущего оценивания и промежуточной аттестации в ТПУ» приказ №88/од от 27.12.2013 г., «Руководящие материалы по текущему контролю и успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета (приказ №77/од от 29.11.2011г.)») На экзамене студенту выдаются билеты, включающие теоретические вопросы и практические задания. Преподаватель, проверив работу, в ходе устной беседы со студентом может задавать вопросы по самому билету, а также дополнительные вопросы по теории и практике. В итоге студент набирает итоговый балл за экзамен, максимально 40 баллов. Оценка за дисциплину формируется как итоговая за работу в семестре и экзамен в соответствие с принятой шкалой оценивания. Студенты, не сдавшие экзамен в сессионный период, могут пересдать его в периоды ликвидации задолженностей в соответствие с действующей процедурой. Результаты промежуточной аттестации оформляются ведомостью и вносятся в зачетную книжку обучающегося.