МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

И.о. директора Инженерной школы

природных ресурсов
Гусева Н.В.
«25»
С 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2019 г. ФОРМА ОБУЧЕНИЯ очная

Макрокинетика химических процессов				
Направление подготовки/ специальность	18.03.01 Химическая технология			
Образовательная программа (направленность (профиль))	Химическая технология переработки нефти и газа			
Специализация	Технология подготовки и переработки нефти и газа			
Уровень образования	высшее	высшее образование - бакалавриат		алавриат
Курс	4	семестр	8	
Трудоемкость в кредитах (зачетных единицах)			3	
Виды учебной деятельности	Временной ресурс			ой ресурс
		Лекции		11
Контактная (аудиторная)	Практические занятия		я	11
работа, ч	Лабораторные занятия		я	22
-	ВСЕГО			44
C	Самостоятельная работа, ч		, ч	64
	ИТОГО, ч 108			108

	подразделение	
	A a	Короткова Е.И.
1	e stup	Мойзес О.Е.
10	1104 1	Юрьев Е.М.
	10)	What stay

2020г.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

«	>> <u></u>	2020 г.
		Гусева Н.В.
прі	иродн	ных ресурсов
И.	о. дир	ектора Инженерной школы
УΊ	BEP	КДАЮ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2019 г. ФОРМА ОБУЧЕНИЯ очная

Макрокинетика химических процессов 18.03.01 Химическая технология Направление подготовки/ специальность Образовательная программа Химическая технология переработки нефти и газа (направленность (профиль)) Специализация Технология подготовки и переработки нефти и газа высшее образование - бакалавриат Уровень образования Курс 4 семестр Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 11 Практические занятия Контактная (аудиторная) 11 Лабораторные занятия работа, ч 22 ВСЕГО 44 Самостоятельная работа, ч 64 ИТОГО, ч 108

Вид промежуточной	Экзамен	Обеспечивающее	ОХИ ИШПР
аттестации		подразделение	
Заведующий кафедрой -			Короткова Е.И.
руководитель Отделения			
химической инженерии на			
правах кафедры			
Руководитель ООП			Мойзес О.Е.
Преподаватель			Юрьев Е.М.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код		Составляющие результатов освоения (дескрипторы компетенций)		
компетенции	компетенции Наименование компетенции		Наименование	
Готов применять аналитические и численные методы решения поставленных задач, использовать современные информационные технологии, проводить обработку		ПК(У)-2.В5	Владеет навыками расчетов основных макрокинетических показателей промышленного каталитического процесса	
ПК(У)-2	информации с использованием прикладных программных средств сферы профессиональной деятельности, использовать сетевые компьютерные технологии и базы данных в своей профессиональной области, пакеты прикладных	ПК(У)-2.У5	Умеет разрабатывать математические модели зерна катализатора и слоя катализатора	
	программ для расчета технологических параметров оборудования	ПК(У)-2.35	Знает макрокинетические области проведения химического процесса в лабораторных и промышленных условиях	
Готов использовать знания фундаментальных физико-химических закономерностей для решения возникающих научно-исследовательских задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе, химических реакторов	ДПК(У)-3.В1	Владеет опытом практических расчетов при моделировании промышленных химических процессов и реакторов		
	химических закономерностей для решения возникающих научно- исследовательских задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе, химических	ДПК(У)-3.У1	Умеет составлять математические модели при разработке и исследовании промышленных химических реакторов	
		ДПК(У)-3.31	Знает физико-химические основы расчета промышленных химических реакторов	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части модуля специализации Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Компетенция	
Код	Наименование	Компетенция
РД1	Знать теоретические основы внутри- и внешнедиффузионных явлений,	ПК(У)-2
тдт	имеющих место при протекании гетерогенных каталитических процессов.	11K(3)-2
	Владеть навыками составления математических моделей процессов внутри	
РД2	зерна катализатора и материального баланса внешнедиффузионных	ДПК(У)-3
	процессов для одно- и многореакционных схем превращения.	
	Владеть навыками моделирования гетерогенных химических реакторов и	
РД3	оценки оптимальных пористой структуры, формы и размера зерна	ДПК(У)-3
	катализатора.	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины Основные виды учебной деятельности

Разделы дисциплины	Формируемый	Виды учебной деятельности	Объем
	результат		времени, ч.
	обучения по дисциплине		
Раздел 1. Макрокинетические	Диециние	Лекции	4
области протекания химических	рп1	Практические занятия	4
реакций	РД1	Лабораторные занятия	5
		Самостоятельная работа	16
Раздел 2. Внутридиффузионная	рπ1	Лекции	3
область химического процесса	РД1	Практические занятия	5
-	РД2	Лабораторные занятия	9
	РД3	Самостоятельная работа	24
Раздел 3. Гетерогенные		Лекции	4
катализаторы и их оптимальные	рп2	Практические занятия	2
характеристики	РД3	Лабораторные занятия	8
		Самостоятельная работа	24

Содержание разделов дисциплины:

Раздел 1. Макрокинетические области протекания химических реакций

Введение в макрокинетику. Основы диффузионной кинетики. Цели и задачи макрокинетики, ее роль в совершенствовании современных химических производств. Основные методы решения макрокинетических задач. Основные разделы макрокинетики. Основы диффузионной кинетики. Понятия о макрокинетических областях протекания реакции. Внешнедиффузионное торможение и разогрев внешней поверхности катализатора. Влияние различных факторов на протекание химической реакции во внешнедиффузионной области.

Темы лекций:

- 1. Введение в макрокинетику. Основные разделы макрокинетики.
- 2. Основы диффузионной кинетики. Внешнедиффузионная область.
- 3. Теория теплового режима химической реакции.
- 4. Влияние различных факторов на протекание химической реакции во внешнедиффузионной области.

Названия лабораторных работ:

1. Расчет эффективных коэффициентов диффузии при протекании гетерогенных химических реакций.

Раздел 2. Внутридиффузионная область химического процесса

Внутридиффузионная область. Скорость реакций в пористых катализаторах. Модели пористой структуры катализатора. Параметр Тиле и фактор эффективности. Внутридиффузионное торможение и внутренний разогрев поверхности катализатора. влияния диффузии вешеств В порах катализатора. Переходные макрокинетические области. Селективность при протекании химических реакций. Селективность сложных реакций при диффузионном торможении процесса. Селективность последовательных параллельных реакций внешневнутридиффузионных областях.

Темы лекций:

- 1. Модели пористой структуры катализатора
- 2. Протекание химической реакции во внутридиффузионной области.
- 3. Параметр Тиле и фактор эффективности

4. Анализ селективности протекания химических реакций в различных макрокинетических областях

Названия лабораторных работ:

- 1. Моделирование процессов в пористом зерне катализатора
- 2. Моделирование химической реакции в зерне катализатора полидисперсной структуры.

Раздел 3. Гетерогенные катализаторы и их оптимальные характеристики

Характеристики пористой структуры катализатора. Размеры пор, модели пор катализатора. Моно-, би- и полидисперсная структуры катализатора. Оптимальная пористая структура катализатора. Основные факторы, влияющие на гидравлическое сопротивление и размер слоя катализатора. Фактор формы частицы катализатора. Оценка фактора эффективности для частиц различной формы.

Темы лекций:

- 1. Оптимальная пористая структура катализаторов.
- 2. Оптимальные форма и размеры зерна катализатора.
- 3. Гетерогенные каталитические реактора

Названия лабораторных работ:

- 1. Расчет гидравлического сопротивления слоя катализатора.
- 2. Расчет каталитических химических реакторов.
- 3. Расчет жидкофазного реактора алкилирования.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение индивидуальных заданий и контролирующих мероприятий и др.);
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий;
- Подготовка к практическим и семинарским занятиям;
- Подготовка к оценивающим мероприятиям;

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Рудобашта, Станислав Павлович. Диффузия в химико-технологических процессах : учебное пособие для вузов / С. П. Рудобашта, Э. М. Карташов. 2-е изд., перераб. и доп.. Москва: КолосС, 2010. 478 с.: ил.. Для высшей школы. Библиогр.: с. 467-478.. ISBN 978-5-9532-0714-0.
- http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C174255
- 2. Ушева, Наталья Викторовна. Макрокинетика химических процессов и расчет реакторов: учебное пособие [Электронный ресурс] / Н. В. Ушева, А. В. Кравцов; Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Кафедра химической технологии топлива и

- химической кибернетики (ХТТ). 2-е изд.. 1 компьютерный файл (pdf; 1.3 MB). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m267.pdf (контент) http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C266113
- 3. Математическое моделирование химико-технологических процессов: учебное пособие [Электронный ресурс] / Н. В. Ушева [и др.]; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 1.8 МВ). Томск: Изд-во ТПУ, 2014. Заглавие с титульного экрана. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m366.pdf (контент) http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C297780

Дополнительная литература:

- 4. Франк-Каменецкий, Давид Альбертович. Основы макрокинетики. Диффузия и теплопередача в химической кинетике / Д. А. Франк-Каменецкий. 4-е изд.. Долгопрудный: Интеллект, 2008. 408 с. Библиография в конце глав. ISBN 978-5-91559-004-4.
- http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C152589
- 5. Бесков, Владимир Сергеевич. Моделирование каталитических процессов и реакторов / В. С. Бесков, В. Флокк. Москва: Химия, 1991. 256 с.. Библиогр.: с. 246-253.. ISBN 5-7245-0426-X.
- http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C36452
- 6. Бесков, Владимир Сергеевич. Общая химическая технология : учебник для вузов / В. С. Бесков. Москва: Академкнига, 2006. 452 с.: ил.. Учебник для вузов. Рекомендуемая литература: с. 446.. ISBN 5-94628-149-6.
- http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C112994
- 7. Крайденко, Роман Иванович. Тепловые процессы в химической технологии : учебное пособие / Р. И. Крайденко; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2010. 96 с.: ил.. Библиогр.: с. 94-95.. ISBN 978-5-98298-768-6. http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C208566
- 8. Беляев, Василий Михайлович. Расчет и конструирование основного оборудования отрасли: учебное пособие / В. М. Беляев, В. М. Миронов; Томский политехнический университет (ТПУ), Институт дистанционного образования. Томск: Изд-во ТПУ, 2009. 288 с.: ил.. Библиогр.: с. 280-282.
- http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C199901
- **6.2 Информационное обеспечение** (Internet-ресурсы, в т.ч. в среде LMS Moodle и др. образовательные и библиотечные ресурсы):
- 1. Электронный курс по дисциплине Макрокинетика химических процессов / ДО 2015» Доступ из корпоративной сети ТПУ. Схема доступа: https://eor.lms.tpu.ru/course/view.php?id=1755
- 2. ЭБС «Лань». Политематический ресурс (в основном, коллекции книг ведущих издательств учебной и научной литературы). Режим доступа: из аудитории с компьютерами, подключенными к сети ТПУ (http://e.lanbook.com/books).
- 3. Журнал «Кинетика и катализ» Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: https://elibrary.ru/title_about_new.asp?id=7848.
- 4. Журнал «Катализ в промышленности» Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: https://elibrary.ru/contents.asp?titleid=7328.

Лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

- 1. Unisim Design R460 (UniSim Design Academic Network)
- Acrobat Reader DC and Runtime Software Distribution Agreement; Visual C++
 Redistributable Package; UniSim Design Academic Network; PascalABC.NET;
 Mozilla Public License 2.0; K-Lite Codec Pack; GNU Lesser General Public
 License 3; GNU General Public License 2; GNU Affero General Public License 3;
 Chrome; Berkeley Software Distribution License 2-Clause

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для

практических и лабораторных занятий:

Nº	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения практических, лекционных занятий, консультаций, текущего контроля и промежуточной аттестации (учебная аудитория, оборудованная демонстрационным материалом и мультимедийной техникой) 634034 г. Томская область, 634034, г. Томск, пр. Ленина, 43а, учебный корпус № 2, аудитория 131	Комплект учебной мебели на 24 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634034 г. Томская область, 634034, г. Томск, пр. Ленина, 43а, учебный корпус № 2, аудитория 133	Комплект учебной мебели на 13 посадочных мест; Тумба стационарная - 1 шт.; Компьютер - 13 шт.; Проектор - 1 шт. Acrobat Reader DC and Runtime Software Distributior Agreement; Visual C++ Redistributable Package; UniSim Design Academic Network; PascalABC.NET; Mozilla Public License 2.0; K-Lite Codec Pack; GNU Lesser General Public License 3; GNU General Public License 2; GNU Affero General Public License 3; Chrome; Berkeley Software Distribution License 2-Clause

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 18.03.01 «Химическая технология», профилю «Химическая технология переработки нефти и газа», специализации «Технология подготовки и переработки нефти и газа» (приема 2019 г., очная форма обучения).

Разработчик(и):	Подпись	ФИО
Доцент ОХИ ИШПР	lemon 1	Е.М. Юрьев
(протокол от 20.05.2019 г. № 7	7).	еления химической инженерии
Заведующий кафедрой-руково на правах кафедры, д.х.н., про	фессор	/Короткова Е.И./

Лист изменений рабочей программы дисциплины¹:

Учебный год	Содержание /изменение	Обсуждено на заседании отделения химической инженерии (протокол)
2022/2023	Обновлено содержание разделов дисциплины. Обновлен список литературы Обновлены материалы в ФОС дисциплины	Протокол № 1 от 31.08.2022 г

_

 $^{^{1}}$ Ежегодное обновление программы с учетом развития науки, культуры, экономики, техники и технологий, социальной сферы.