ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2020 г.

ФОРМА ОБУЧЕНИЯ очная

	Получение и применение импульсных пучков заряженных частиц
Направление подготовки/ специальность	16.04.01 Техническая физика
Образовательная программа (направленность (профиль))	Пучковые и плазменные технологии
Специализация	Пучковые и плазменные технологии
Уровень образования	высшее образование - магистратура
•	
Курс	2 семестр 3
Трудоемкость в кредитах	3
(зачетных единицах)	
2	
Заведующий кафедрой –	Кривобоков В.П.
руководитель	B. Kyubovous
научно-образовательного	130, gravo o c asi
центра на правах кафедры	
Руководитель ООП	Сиделёв Д.В.
Преподаватель	Янин С.Н.

1. Роль дисциплины «Получение и применение импульсных пучков заряженных частиц» в формировании компетенций выпускника:

Код компетенции	Наименование	Составляющие результатов освоения (дескрипторы компетенций)			
код компетенции	компетенции	Код	Наименование		
ОПК(У)-1	Способность к профессиональной эксплуатации современного научного и технологического оборудования и приборов, предназначенных для использования в области технической физики	ОПК(У)-1.31	Знает устройство и принципы работы современного оборудования и приборов, используемых в области технической физики		
ОПК(У)-2	Способность демонстрировать и использовать углублённые теоретические и практические знания фундаментальных и прикладных наук, в том числе из области технической физики	ОПК(У)-2.31	Обладает знаниями о фундаментальных понятиях, механизмах процессов и их закономерностях, имеющих большое значение для решения прикладных задач в области современной технической физики.		
ОПК(У)-5	Способность осуществлять научный поиск и разработку новых перспективных подходов и методов к решению	ОПК(У)-5.У1	Умеет осуществлять поиск, систематизировать и анализировать необходимые данные в научно-технической литературе, разрабатывать новые перспективные подходы и методы к решению профессиональных задач		

Код компетенции	Наименование	Составляющие результатов освоения (дескрипторы компетенций)		
под полителенции	компетенции	Код	Наименование	
	профессиональных задач, готовность к профессиональному росту, к активному участию в научной деятельности, конференциях, выставках и презентациях	ОПК(У)-5.31	Обладает знаниями о современном состоянии теоретических и экспериментальных работ в области технической физики	
ПК(У)-9	Способность разрабатывать, проводить наладку и испытания, эксплуатировать наукоемкое	ПК(У)-9.У1	Умеет разрабатывать структурные схемы вакуумного пучково-плазменного оборудования, контролировать его работу	
. ,	технологическое и аналитическое оборудование	ПК(У)-9.31	Знает принципы функционирования и устройство элементов и узлов пучковых и плазменных установок	

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине		Наименование раздела	Методы оценивания
Код	Наименование	компетенции (или ее	дисциплины	(оценочные мероприятия)
		части)		
РД-1	Применять знания фундаментальных физических	ОПК(У)-2	Раздел 1	Коллоквиум;
	принципов, лежащих в основе генерации пучков		Раздел 2	Защита отчёта по лабораторной
	заряженных частиц и их использовании в решении ряда			работе
	технологических задач; знать принципы работы			
	ускорителей, используемых в решении практических задач,			
	их основные параметры и области применения.			
РД-2	Выполнять расчеты основных узлов технологических	ОПК(У)-5	Курсовой проект	Защита отчёта по лабораторной
	источников, генерирующих пучки заряженных частиц.		Раздел 3	работе;
				Защита проекта
РД -3	Применять экспериментальные методы исследования	ОПК(У)-1	Раздел 2	Коллоквиум;
	параметров пучков заряженных частиц.		Раздел 4	Защита отчёта по лабораторной
				работе
				-

РД-4	Рассчитывать основные параметры ускорителей в	ПК(У)-9	Раздел 1	Коллоквиум;
	зависимости от требуемых параметров пучка заряженных		Раздел 2	Защита отчёта по лабораторной
	частиц.			работе
РД-5	Выполнять обработку и анализ данных, полученных при	ОПК(У)-2	Раздел 3	Коллоквиум;
	теоретических и экспериментальных исследованиях		Раздел 4	Защита отчёта по лабораторной
	параметров ионных и электронных пучков.			работе

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом — «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Шкала для оценочных мероприятий дифференцированного зачета, курсового проекта и зачета

Степень сформированности результатов обучения	Балл	Соответствие тради	ционной оценке	Определение оценки
90% ÷ 100%	90 ÷ 100	«Отлично»	«Зачтено»	Отличное понимание, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному

70% ÷ 89%	70 ÷ 89	«Хорошо»		Достаточно полное понимание, хорошие знания, умения и владение опытом практической деятельности,
				необходимые результаты обучения сформированы, качество ни одной из них не оценено минимальным
				количеством баллов
55% ÷ 69%	55 ÷ 69	«Удовл.»		Приемлемое понимание, удовлетворительные знания, умения и владение опытом практической
				деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено
				минимальным количеством баллов
0% ÷ 54%	0 ÷ 54	«Неудовл.»	«Не зачтено»	Результаты обучения не соответствуют минимально достаточным требованиям

5. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Коллоквиум	Примеры вопросов:
		1. Виды ионизирующих излучений.
		2. Источники электронов в электронных ускорителях. Измерение энергии электронов
		3. Закон 3/2 для ионов.
		4. Основные принципы ускорения заряженных частиц.
		5. Источники электронов в ускорителях: твердотельные и плазменные.
		6. Влияние пространственного заряда в ускоряющих системах. Закон 3/2
		7. Генерация вторичных излучений при взаимодействии заряженных частиц с веществом.
		8. Методы вывода пучка из вакуумных камер ускорителей.
		9. Извлечение ионов из плазменного источника в ионных ускорителях.
		10. Высоковольтные ускорители электронов, принцип работы ускорителей.
		11. Пеннинговские источники ионов. Измерение тока ионов.
		12. Генерация рентгеновского излучения, тормозное и характеристическое рентгеновское
		излучение.
		13. Резонансные ускорители электронов. Принцип автофазировки.
		14. Распыление твердых тел, основные закономерности и механизм распыления
		15. Фотоядерные реакции. Нижний порог реакций для легких частиц.

	Оценочные мероприятия	Примеры типовых контрольных заданий
		16. Низкоэнергетичные электронные ускорители, ускорители с плазменным катодом
		17. Методы измерения энергии ионов и тока пучка
		18. Взаимодействие рентгеновского излучения с веществом. Биологическая защита ускорителей.
		19. Методы измерения основных параметров электронного пучка.
		20. Магнитоизолированные ионные диоды.
		21. Биологическая защита ускорителей. Материалы применяемые для защиты от тормозного
		рентгеновского излучения
		22. Применение электронных ускорителей и рентгеновского излучения в медицине.
		23. Транспортировка мощных ионных пучков
		24. Биологическая защита ускорителей.
		25. Использование ускорителей в защите окружающей среды.
		26. Методы создания плазмы в диодных системах источников мощных ионных пучков
		27. Источники ионизирующих излучений, отличительные особенности использования
		ускорителей заряженных частиц.
		28. Основные типы электронных ускорителей. Измерение тока пучка.
2.	Защита отчёта по	Примеры вопросов на защите лабораторных работ:
	лабораторной работе	1. Дать подробное описание устройства отдельных узлов изучаемого ускорителя.
		 Описать механизмы генерации пучков заряженных частиц на изучаемом ускорителе. Объяснить физический смысл полученных результатов и обосновать их корректность.
		3. Обыленить физический смысл полученных результатов и обосновать их корректность.
3.	Защита курсового проекта	Тематика курсовых проектов:
		1. Ионный имплантер для легирования фосфором кремниевых пластин.
		2. Газовый имплантер для ионного перемешиания.
		3. Имплантер атомов металлов для создания слоёв с высокой механической прочностью.
		4. Мощный импульсный источник ионов.
		5. Генератор нейтронного излучения.

Оценочные мероприятия	Примеры типовых контрольных заданий
	6. Источник ускоренных атомов.
	7. Источник ионов со взрывоэмиссионным катодом.
	8. Источник плазмы для управляемого термоядерного синтеза.
	9. Методы измерения параметров импульсных сильноточных пучков.
	10. Плазмогенераторы для технологических приложений.
	11. Процессы формирования импульсного сильноточного ионного пучка.
	12. Новые принципы повышения темпов ускорения заряженных частиц.
	13. Ионные источники для очистки поверхности.
	14. Ускорители ля медицинских целей.
	15. Мощный импульсный источник элктронов.

6. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Коллоквиум	Коллоквиум проводится для оценки усвоения студентами теоретического материала. Вопросы
		выдаются студентам заранее. На занятии студент получает индивидуальное задание. Выполнение
		– либо полностью письменно, либо в устной форме (сначала даётся время для подготовки
		развёрнутых ответов, а затем – поочерёдно устные ответы каждого студента с последующим
		обсуждением студентами всей группы).
2.	Защита отчёта по	Работы выполняются индивидуально. Преподаватель выдаёт задание и указывает цель работы.
	лабораторной работе	Студенты выполняют задание в течение занятия, готовят отчёт и предъявляют его для защиты
		перед преподавателем. Преподаватель проверяет, отражена ли в отчете цель работы, выполнены
		ли все требования по содержанию, сделаны ли корректные выводы.
3.	Защита курсового проекта	Каждый студент получает индивидуальное задание в первой половине семестра. В течение
		выполнения проекта студент имеет право обращаться за консультациями к преподавателю.
		Периодически в течение семестра каждый студент выступает с устным отчётом о ходе выполнения
		работы. Проект оформляется в соответствии со стандартом ТПУ. Подготовленная курсовая работа
		подписывается студентом и представляется преподавателю на проверку в установленные
		календарным рейтинг планом курсовой работы сроки. Проверка курсовых работ преподавателем
		осуществляется в течение трех дней после сдачи.
		Преподаватель оценивает выполнение курсовой работы и соответствие календарному рейтинг
		плану по 40-балльной системе. Курсовая работа считается выполненной, а студент получает
		допуск к защите при получении 22 баллов, на титульном листе преподаватель делает отметку «К
		защите», проставляет набранное количество баллов и ставит подпись. Если в результате проверки

Оценочные мероприятия	П	роцедура проведения оценочного м	иероприятия и необходимые методические	указания
	переделки. Замечалисте делается отм Защита курсового в с докладом по выпопо предварительно подготовленной заг	ния преподаватель в писетка «Доработать» или «проекта производится на олненной работе. Комисс	специальных семинарах. Каж сия в составе двух преподавате ям. Оцениваются качество и советов на вопросы.	студенту. На титульном дый студент выступает елей оценивает работу
	степень владения заявленной темой исследования	теме и в полной мере её раскрывает, студент демонстрирует свободное владение темой	студент испытывает затруднения при докладе	теме, студент не способен передать основные этапы при написании работы
	2. Навыки проведения расчетов и оценка полученных результатов	Студент может рассказать алгоритм вычисления, демонстрирует формулы для вычисления и расчеты, может интерпретировать полученные результаты, понимает и демонстрирует взаимосвязь рассчитанных показателей.	Студент может рассказать алгоритм вычисления, испытывает затруднения при демонстрации формул для вычисления и расчетов, может интерпретировать полученные результаты, испытывает затруднения при демонстрации взаимосвязи рассчитанных показателей.	Студент испытывает затруднения или не может рассказать алгоритм вычисления, испытывает затруднения при демонстрации формул для вычисления и расчетов, не может интерпретировать полученные результаты, не понимает взаимосвязи рассчитанных показателей
	3. Ответы на вопросы преподавателя	=	Студент испытывает затруднения при ответе на все вопросы, дает полные ответы с помощью наводящих вопросов, демонстрирует свободной владение по каждому разделу курсовой работы и понимает взаимосвязь этих разделов.	Студент испытывает затруднения при ответе на все вопросы, не может дать ответ наводящих вопросов, не понимает взаимосвязи полученных показателей.
	60-балльной систе итоговую оценку п	нивает защиту курсовой же. Защита курсовой робот по курсовой работе при по	работы и соответствие календа работы считается выполненно олучении 33 баллов, на титулы плов (выполнение работы+зап	ой, а студент получает ном листе преподаватель

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		защиты студент получает меньшую сумму баллов, то студент приходит на защиту повторно в часы консультаций преподавателя. Итоговая оценка за курсовую работу рассчитывается на основе полученной суммы баллов за выполнение курсовой работы и баллов, набранных при защите согласно календарному рейтинг плану дисциплины.
4.	Зачёт	Итоговая рейтинговая оценка суммируется по итогам мероприятий текущего контроля в семестре.