ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2019 г.

форма обучения заочная

Подземная гидромеханика						
II	21.05.02	2 Прикладная ге	описиа			
Направление подготовки/	41.05.02	г прикладная ге	OHOI NH			
специальность	Т					
Образовательная программа	Прикла	адная геология				
(направленность (профиль))						
Специализация	Геологі	ия нефти и газа				
Уровень образования	высшее	е образование -	специали	тет		
Курс	4	семестр	7			
Трудоемкость в кредитах					3	
(зачетных единицах)						
(000 10 111111 1711111111)			***************************************			
И.о. заведующего кафедрой -		0		Мельник И.А.		
руководителя ОНД		Thu				
на правах кафедры			1			
Руководитель ООП		+7	A Com	CIPOROBA 31.71.		
Преподаватель		V. Suns		Зятиков П.Н.		

1. Роль дисциплины «Основы разработки месторождений нефти и газа» в формировании компетенций выпускника:

Элемент образовательной	Семестр	Код компетенции	Наименование компетенции	Составляющие результатов освоения (дескрипторы компетенций)		
программы (дисциплина, практика, ГИА)				Код	Наименование	
Подземная гидромеханика	5 ПС		Готовность применять знания физико-химической механики для осуществления Технологических процессов	ПСК(У)- 3.7.В2	Владеть методами расчета одномерных гомогенных и многофазных потоков жидкости и газа	
		ПСК(У)-3.7 технологических про сбора и подготовки п		ПСК(У)- 3.7.У2	Решать и проводить анализ задач подземной нефтегазовой гидромеханики	
			сбора и подготовки продукции скважин нефтяных и газовых месторождений	ПСК(У)- 3.7.32	Основные понятия и законы фильтрации нефти, газа и воды	

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине		Наименование раздела дисциплины	Методы оценивания
Код	Наименование	компетенции (или ее части)		(оценочные мероприятия)
РД-1	Владеть навыками в построении различных моделей в подземной гидромеханике и методиками расчета этих моделей	ПСК(У)-3.7	Раздел 1. Физические основы подземной гидромеханики. Дифференциальные уравнения фильтрации. Раздел 2. Установившаяся потенциальная одномерная фильтрация. Нестационарная фильтрация упругой жидкости и газа. Раздел 3. Основы теории фильтрации многофазных систем. Основы фильтрации неньютоновских жидкостей. Раздел 4. Установившаяся потенциальная плоская (двухмерная) фильтрация. Основы численного моделирования.	Тест 1,2 Защита отчета по лабораторным работам 1,2, 3, 4. Экзаменационные вопросы.
РД-2	Практическое применение законов фильтрации для прикладной геологии.	ПСК(У)-3.7	Раздел 1. Физические основы подземной гидромеханики. Дифференциальные уравнения фильтрации.	Тест 1,2 Защита отчета по лабораторным работам 1,2, 3, 4. Экзаменационные вопросы.

Раздел 2. Установившаяся потенциальная одномерная фильтрация. Нестационарная фильтрация упругой жидкости и газа. Раздел 3. Основы теории фильтрации многофазных систем. Основы фильтрации неньютоновских жидкостей. Раздел 4. Установившаяся потенциальная плоская (двухмерная) фильтрация.
Основы численного моделирования.

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки			
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности,			
		необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному			
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов			
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов			
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям			

Шкала для оценочных мероприятий экзамена

% выполнения	Экзамен,	Соответствие	Определение оценки
--------------	----------	--------------	--------------------

заданий экзамена	балл	традиционной оценке	
90%÷100%	18 ÷ 20	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	11 ÷ 13		Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Тестирование	Вопросы к Тесту 1: 1. Что характеризует термин «абсолютная проницаемость»? 2. Какую размерность имеет коэффициент фильтрации? 3.Чему равна полная пористость -m ₀ ? 4. Что характеризует параметр проницаемость? 5. Что означает термин насыщенность? 6. Какие процессы называют неустановившимися? 7. Что означает термин сплошная среда? 8. При бурении скважины вскрыт водоносный пласт с напорными водами. Устье скважины оборудовано манометром, который показывает избыточное давление 4,33·104 Па. Определить на какую высоту будет фонтанировать вода, если удельный вес воды 9840 Н/м. 9. Что означает термин «газовая шапка»? 10. Определить возможный дебит скважины, если площадь фильтрации равна 800м², гидравлический уклон 0,05; коэффициент фильтрации 0,04м/с.
		Вопросы к Тесту 2: 1. Коэффициент сжимаемости нефти? Размерность? 2. Коэффициентом нефтенасыщенности (газонасыщенности) коллектора называется: 3. Какой физический закон часто используется для описания движения нефти в пласте? 4. Уравнение состояния газа - это соотношение, связывающее 5. Что такое газовый фактор? 6. Парциальное давление компонента газовой смеси – это давление:

	Оценочные мероприятия	Примеры типовых контрольных заданий
		7. Давлением насыщения пластовой нефти называется максимальное давление, при котором:
		8. Парциальный объем – это объем, который занимал бы данный компонент смеси газов,
		если бы:
		9. При фазовых превращениях углеводородных систем критической точкой называется:
		10. При увеличении пластовой температуры объемный коэффициент воды:
2.	Защита лабораторной работы	Вопросы:
		1. Идеализированные модели пористых коллекторов.
		2. Реологические модели горных пород.
		3. Какие среды называются изотропными и анизотропными?
		4. Виды пористости и их определения? Размерности.
		5. Виды проницаемости и их определения? Размерности в различных системах единиц и их
		связь между собой.
		6. Определение эффективного диаметра.
		7. Что такое насыщенность и связанность? Чему равна сумма насыщенностей?
		8. Удельная поверхность – определение, размерность, характерные значения для
		коллекторов.
		9. Определение густоты.
		10. Скорость фильтрации, физический смысл и связь с истинной скоростью.
		11. Уравнение неразрывности. Его физический смысл.
		12. Уравнение сохранения количества движения.
		13. Объяснение закона Дарси из общего уравнения сохранения количества движения.
		14. Вид закона Дарси.
		15. Нижняя граница применимости закона Дарси для пористой среды. Закон фильтрации для нижней области.
		16. Верхняя граница применимости закона Дарси для пористой среды. Законы фильтрации для верхней области.
		17. Критерии применимости закона Дарси для пористой среды.
		18. Верхняя граница применимости закона Дарси для трещинной среды. Критерии
		применимости закона Дарси для трещинной среды.
		19. Что такое потенциальное течение?
		20. Потенциал поля скоростей и выражение для закона Дарси через потенциал.
		21. Вывод основного уравнения потенциального фильтрационного течения.
		22. Оператор Лапласа: вид данной функции в декартовой системе координат, тип (векторный
		или скалярный), тип аргумента (векторный или скалярный).

Оценочные	е мероприятия Примеры типовых контрольных заданий
	23. Свойства уравнения Лапласа.
	24. Замыкающие соотношения.
	25. Связь пластового давления с эффективным давлением. Что такое эффективное давление?
	26. Какие потоки называются одномерными?
	27. Прямолинейно-параллельный поток. Примеры.
	28. Плоскорадиальный поток. Примеры.
	29. Радиально-сферический поток. Примеры.
	30. Что входит в исследование фильтрационного течения.
	31. Общее дифференциальное уравнение потенциального одномерного потока.
	32. Показатель формы потока.
	33. Получение выражения для потенциала и дебита плоскорадиального течения.
	34. Получение выражения для потенциала и дебита прямолинейно-параллельного и радиально-сферического течений.
	35. Потенциал несжимаемой жидкости в недеформируемом (пористом) пласте.
	36. Потенциал несжимаемой жидкости в деформируемом (трещинном) пласте.
	37. Потенциал упругой жидкости в недеформируемом пласте.
	38. Потенциал сжимаемой жидкости (газа) в недеформируемом (пористом) пласте.
	39. Уравнение Дюпюи.
	40. Коэффициент продуктивности. Размерность.
	41. Депрессия и воронка депрессии.
	42. Методика получения закона движения частиц жидкости.
	43. Методика вывода средневзвешенного давления.
	44. Индикаторная зависимость и индикаторная диаграмма.
	45. Нарисовать и объяснить графики давления, скорости фильтрации для несжимаемой жидкости в пористом и трещинном пластах.
	46. Нарисовать и объяснить графики давления, скорости фильтрации для несжимаемой
	жидкости и газа в пористом пласте.
	47. Нарисовать и объяснить индикаторные диаграммы для несжимаемой жидкости в пористом
	и трещинном пластах. В каких координатах надо строить диаграммы, чтобы получить
	прямолинейные зависимости. 48. Нарисовать и объяснить индикаторные диаграммы для несжимаемой жидкости и газа в
	пористом пласте. В каких координатах надо строить диаграммы, чтобы получить
	прямолинейные зависимости.
	±
	49. Отличие уравнений притока и дебита для несжимаемой жидкости, текущей по закону

	Оценочные мероприятия	Примеры типовых контрольных заданий
		Дарси и по двухчленному закону.
		50. Зависимость величины проницаемости от метода обработки индикаторной диаграммы.
		51. Слоистая неоднородность. Зональная неоднородность.
		52. Виды несовершенств скважины. Совершенная скважина.
		53. Приведенный радиус. Относительное вскрытие.
		54. Радиус зоны влияния несовершенств по степени и характеру вскрытия.
		55. Влияние радиуса скважины на её производительность при линейной и нелинейной
		фильтрации и различных типов одномерного течения.
		56. Определяющие формы пластовой энергии при упругом режиме.
		57. Коэффициент объёмной упругости жидкости.
		58. Упругий запас.
		59. Чему равен коэффициент упругоёмкости пласта?
		60. Коэффициентом пьезопроводности для упругой жидкости.
		61. Коэффициентом пьезопроводности для газовых пластов.
		62. Параметр Фурье.
		63. Уравнение пьезопроводности упругой жидкости и его вывод.
		64. Интегрально-показательная функция и ее свойства.
		65. Уравнение КВД. Области использования.
66.	Экзамен	Вопросы на экзамен:
		1. Основные требования адекватности моделей реальным процессам.
		2. Скорость фильтрации, физический смысл и связь с истинной скоростью.
		3. Определить потери напора на трение.
		4. Основные задачи моделирования.
		5. Модели флюидов по степени сжимаемости.
		6. Уравнение неразрывности. Его физический смысл.
		7. Примеры нестационарных и стационарных процессов в нефтегазовой гидродинамике.
		8. Закон Дарси из общего уравнения сохранения количества движения.
		9. Давление, скорости фильтрации для несжимаемой жидкости в пористом и трещинном
		пластах.
		10. Уравнение Дюпюи.
		11. Уравнение притока и дебита для несжимаемой жидкости, текущей по закону Дарси и по
		двухчленному закону.
		12. Гомо- и гетерогенные системы.
		13. Моделей коллекторов

Оценочные мероприятия	Примеры типовых контрольных заданий
	14. Вывод закона Дарси
	15. Определение вязкости воды и нефти.
	16. Индикаторные диаграммы для несжимаемой жидкости в пористом и трещинном пластах.
	17. Определение пористости, проницаемости и насыщенности нефтяного пласта.
	18. Массовая растворимость газа в жидкости.
	19. Удельная поверхность – определение, размерность, характерные значения для
	коллекторов.
	20. Закон Дарси. Его применение.
	21. Основные характеристики нефти и газа.
	22. Трещинно-пористые коллектора и их идеализация.
	23. Проницаемость. Размерности в различных системах единиц и их связь между собой.
	24. Уравнение неразрывности потока для несжимаемой жидкости.
	25. Реологические модели горных пород.
	26. Верхняя граница применимости закона Дарси для пористой среды. Законы фильтрации
	для верхней области.
	27. Плоскорадиальный поток.
	28. Нижняя граница применимости закона Дарси для пористой среды. Закон фильтрации для
	нижней области.
	29. Основное требование осреднения параметров по пространству, дающее право считать их
	непрерывным.
	30. Определение эквивалентного диаметра.
	31. Потенциал упругой жидкости в недеформируемом пласте.
	32. Радиально-сферический поток.
	33. Связь пластового давления с эффективным.
	34. Закон Дарси для і –й фазы.
	35. Капиллярное давление.
	36. Слоистая неоднородность. Зональная неоднородность.
	37. Уравнения неразрывности для двухфазного потока в случае сжимаемых и несжимаемых
	сред.
	38. Характер изменения функции Баклея – Леверетта в зависимости от изменения
	относительной вязкости.
	39. Закон Генри растворимости газа в жидкости.
	40. Средневзвешенная плотность ГЖС при ее движении в НКТ.
	41. Допущения теории одномерного движения двухфазной жидкости в пористой среде.

Оценочные мероприятия	Примеры типовых контрольных заданий
	42. Условия фонтанирования скважин. Минимальные забойные давления фонтанирования.
	43. Влияние радиуса скважины на её производительность при линейной и нелинейной
	фильтрации и различных типов одномерного течения.
	44. Граничные условия для уравнения изменения насыщенности. Сущность концевого
	эффекта.
	45. Определение физического и математического моделирования.
	46. Модель Рапопорта – Лиса.
	47. Зависимость дебита газированной жидкости от величины пластового давления. Физическое объяснение.
	48. Связь проекций массовой скорости с потенциалом и функцией тока.
	49. Определение движущей силы, скорости и интенсивности процесса в трубе.
	50. Основные проблемы математического моделирования полей пластовых давлений.
	51. Фильтрационный поток от нагнетательной скважины к эксплуатационной (выражение для
	потенциала, изобара, поле течения).
	52. Технологический режим работы добывающих скважин.
	53. Потенциальная функция и функция тока.
	54. Основные причины идеализации математической модели.
	55. Нижняя граница применимости закона Дарси для пористой среды. Закон фильтрации для нижней области.
	56. Физический смысл проницаемости
	57. Принципиальное отличие зависимости для дебита упругой жидкости от несжимаемой.
	58. Уравнения неразрывности для двухфазного потока в случае сжимаемых и несжимаемых сред.
	59. Верхняя граница применимости закона Дарси для трещинной среды. Критерии
	применимости закона Дарси для трещинной среды.
	60. Характерные особенности трещинно-пористой среды.
	61. Физический смысл проницаемости.
	62. Идеализированные модели пористых коллекторов.
	63. Вывод основного уравнения потенциального фильтрационного течения
	64. Плотность идеальной газожидкостной смеси. Основные соотношения связи реальной и
	идеальной плотности, истинного и расходного газосодержания в двухфазном потоке.
	65. Выражения для потенциала и дебита плоскорадиального течения.
	66. Нижняя граница применимости закона Дарси для пористой среды. Закон фильтрации для
	нижней области.

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Тестирование	Студент получает бланк с 10 вопросами. На тест отводится 30 минут. Тест считается выполненным, если
		правильно отвечено не менее чем на 6 вопросов (60%).
2.	Защита лабораторной работы	Защита лабораторной работы осуществляется в виде устного собеседования (презентация). Заключается в
		подведении студентом итогов работы и формулированием основных выводов.
3.	Экзамен	Экзамен сдается в письменной форме. В экзаменационном билете 3 вопроса. Письменный экзамен
		проводится одновременно для всех студентов группы. Результаты письменного экзамена должны быть
		доведены до студентов не позднее двух дней.