МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Директор обеспечивающей Школы
неразрушающего контроля и
безопасности

Д.А. Седнев

2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г.

ФОРМА ОБУЧЕНИЯ очная

Цифровые технологии в медико-биологических исследованиях 12.04.04 Биотехнические системы и технологии Направление подготовки/ специальность Образовательная программа Биомедицинская инженерия (направленность (профиль)) Специализация Биомедицинская инженерия Уровень образования высшее образование - магистратура Курс 3 семестр Трудоемкость в кредитах 6 (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 8 Контактная (аудиторная) Практические занятия θ работа, ч Лабораторные занятия 56 ВСЕГО 64 Самостоятельная работа, ч 152 в т.ч. отдельные виды самостоятельной работы с курсовая работа выделенной промежуточной аттестацией (курсовой проект, курсовая работа) ИТОГО, ч 216

Вид промежуточной аттестации	Экзамен, диф.зачет	Обеспечивающее подразделение	оэи ишнкъ
Заведующий кафедрой - руководитель отделения на правах кафедры		Aus	П.Ф. Баранов
Руководитель ООП	Se	Meller	Е.Ю. Дикман
Преподаватель		gre-	И.А. Лежнина

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п.5.4 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименование	Индикаторы достижения компетенций		Составляющие результатов освоения (дескрипторы компетенции)		
компетенции	компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование	
ОПК(У)-3	Способен приобретать и использовать новые знания в своей предметной области на основе	И.ОПК(У)-3.2	Предлагает новые идеи и подходы к решению инженерных задач с использованием информационных систем и технологий	ОПК(У)- 3.2В1	Владеет навыками по решению актуальных задач биомедицинской инженерии на основе применения современных информационных технологий	
	информационны х систем и технологий, предлагать новые идеи и подходы к решению			ОПК(У)- 32.У1	Умеет формулировать новые идеи и подходы на основе информационных систем и технологий к решению инженерных задач	
	инженерных задач			ОПК(У)- 3.231	Знает возможности современных информационных систем и технологий для решения задач в сфере биомедицинской инженерии	
ПК(У)-3	Способен выбирать метод и разрабатывать программу	И.ПК(У)-3.3	Обрабатывает и анализирует результаты медико- биологических исследований.	ПК(У)- 3.3В1	Владеть навыками анализа результатов экспериментальных исследований;	
	экспериментальных исследований, проводить медикобиологические исследования с использованием технических			ПК(У)- 3.3У1	Уметь формированть заключение и выводы по результатам исследования биотехнических систем и анализа свойств процессов, протекающих в системах	
	средств, выбирать метод обработкирезуль татов исследований.			ПК(У)- 3.331	Знать аппаратные и программные средства, необходимые для автоматизированного анализа биомедицинской информации при проведении экспериментов	
ПК(У)-4	Способен проектировать инновационные биотехнические	И.ПК(У)-4.2.	Ставит задачи проектирования инновационных биотехнических систем медицинского, экологического и	ПК(У)- 4.2В1	Владеет навыками разработки структуры биотехнических систем и медицинских изделий	
	системы и технологии		биометрического назначения	ПК(У)- 4.2У1	Умеет разрабатывать структуры медико- биологических систем, требования к техническим и биологическим элементам	
				ПК(У)- 4.232	Знает свойства исследуемых физиологических сигналов	
				ПК(У)- 4.233	Знает принципы действия измерительных преобразователей (датчиков), особенности измерения в области биомедицинских исследований;	
				ПК(У)- 4.234	Знает методы обработки сигналов и изображений	

Код Наименование		Индикаторы достижения компетенций		Составляющие результатов освоения (дескрипторы компетенции)	
компетенции	компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
				ПК(У)- 4.235	Знает структуру и принципы организации медико-технических информационных систем

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Код	Код Наименование	
		компетенции
РД1	Применять знания принципов построения цифровых систем на базе	И.ОПК(У)-3.2
	современных микроконтроллеров.	И.ПК(У)-4.2.
РД2	Выполнять расчеты и проектирование цифровых устройств в составе	И.ПК(У)-3.3
	медицинского оборудования.	И.ПК(У)-4.2.
РД3	Разрабатывать алгоритмы и программные коды для обработки медико-	И.ОПК(У)-3.2
" 1"	биологической информации.	И.ПК(У)-3.3
	оиологической информации.	И.ПК(У)-4.2.

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел 1. Многоразрядные	РД1, РД2	Лекции	2
микроконтроллеры ЦОС		Практические занятия	0
		Лабораторные занятия	24
		Самостоятельная работа	48
Раздел 2. Интерфейсы приема-	РД1, РД2	Лекции	2
передачи данных		Практические занятия	0
		Лабораторные занятия	8
		Самостоятельная работа	24
Раздел 3. Цифровые методы обработки	РД3	Лекции	4
медицинских сигналов		Практические занятия	0
		Лабораторные занятия	24
		Самостоятельная работа	80

Содержание разделов дисциплины:

Раздел 1. Многоразрядные микроконтроллеры ЦОС

Данный раздел посвящен изучению современных 32-разрядных микроконтроллеров на примере микроконтроллера STM32F407.

Темы лекций:

- 1. Микроконтроллеры для цифровой обработки аналоговых сигналов.
- 2. Микроконтроллер семейства STM32F4x.

Названия лабораторных работ:

- 1. Порты ввода/вывода микроконтроллера STM32F407. Система прерываний.
- 2. Таймеры-счетчики микроконтроллера STM32F407.
- 3. Аналогово-цифровой и цифро-аналоговый преобразователи микроконтроллера STM32F407.

Раздел 2. Интерфейсы приема-передачи данных

В данном разделе рассматриваются базовые интерфейсы приема-передачи данных.

Темы лекций:

1. Виды интерфейсов приема-передачи данных.

Названия лабораторных работ:

- 1. Асинхронный интерфейса UART.
- 2. Реализация приема-передачи данных микроконтроллер-ПК.

Раздел 3. Цифровые методы обработки медицинских сигналов

В данном разделе рассматриваются вопросы обработки медицинских сигналов с применением современных алгоритмов ЦОС.

Темы лекций:

- 1. Основы цифровой обработки сигналов.
- 2. Цифровые фильтры.

Названия лабораторных работ:

1. Основы цифровой обработки сигналов.

- 2. Цифровая обработка медицинских сигналов.
- 3. Методы расчета цифровых фильтров.
- 4. Методы обработки медицинских сигналов.

Темы курсовых работ:

Курсовые работы направлены на разработку систем обработки медицинских сигналов. Пример задания курсовой работы:

1. Выполнить расчет цифрового фильтра, реализовать цифровую фильтрацию в программе MathCAD.

Параметры фильтра:

- Тип фильтра ФНЧ Баттерворта
- Порядок фильтра 5
- Частота среза 20 кГц
- Частота дискретизации 100 кГц

Параметры сигнала:

- Тип сигнала синусоидальный
- Частота сигнала 20 кГц
- Частота помех 30 и 50 кГц
- 2. Разработать алгоритм работы микроконтроллера для фильтрации сигналов
- 3. Разработать алгоритм работы микроконтроллера для определения патологий в ЭКГ сигнале (брадикардия, тахикардия, аритмия) и определения ЧСС

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Перевод текстов с иностранных языков;
- Подготовка к лабораторным работам;
- Выполнение курсовой работы;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1.Учебно-методическое обеспечение

Основная литература

- 1. HazarathaiahMalepati. Digital media processing : DSP algorithms using C [Electronic resource] / HazarathaiahMalepati. 1 компьютерныйфайл (pdf; 26 Mb). Amsterdam: Elsevier, 2010.Доступ из корпоративной сети ТПУ. Системные требования: AdobeReader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2016/science_book/Digital%20Media.pdf
- 2. Цифровая обработка сигналов: учебное пособие [Электронный ресурс] / Е. В. Якимов; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 2.63 MB). Томск: Изд-во ТПУ, 2011. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: AdobeReader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2009/m44.pdf

- 3. Цифровая обработка сигналов: практическое руководство для инженеров и научных работников: пер. с англ. / С. Смит. Москва: Додэка-XXI, 2011. 718 с.: ил.Схема доступа: http://e.lanbook.com/books/element.php?pl1_id=60986
- 4. Цифровая обработка сигналов : учебник / С. Н. Воробьев. Москва: Академия, 2013. 320 с.: ил.

Дополнительная литература

- 1. Васюков В,Н., Цифровая обработка сигналов и сигнальные процессоры в системах подвижной радиосвязи: учебник / В. Н. Васюков. Новосибирск : Изд-во НГТУ, 2006. 292 с. : ил.
- 2. Сигнальные микропроцессоры и их применение в системах телекоммуникаций и электроники: учебное пособие / В. С. Сперанский. М. : Горячая линия-Телеком, 2008. 168 с. : ил.
- 3. Вальпа О.Д., Разработка устройств на основе цифровых сигнальных процессоров фирмы AnalogDevices с использованием Visual DSP++: Горячая линия-Телеком, 2007. 270 с.: ил.
- 4. Буркин Е.Ю. Цифровые системы управления устройств силовой электроники: практикум Томск.: Издательство ТПУ, 2007. 80 с.
- 5. Марпл С.Л. Цифровой спектральный анализ и его приложения. М., Мир, 1990.
- 6. Л. Рабинер, Б. Гоулд, Теория и применение цифровой обработки сигналов, М, Мир, 1978.
- 7. Э. Айчифер, Б. Джервис, Цифровая обработка сигналов. Практический подход, М, Вильямс, 2004.
- 8. А.Б. Сергиенко, Цифровая обработка сигналов, СПб, Питер, 2003.
- 9. Каппелини В., Константинидис А. Дк., Эмилиани П. Цифровые фильтры и их применение. М.: Энергоатомиздат, 1983
- 10. Рабинер Л, Гоулд Б. Теория и применение цифровой обработки сигналов / Пер. с англ.; Под ред. Ю. И. Александрова. М.: Мир, 1978.
- 11. Сергиенко А. Б. Цифровая обработка сигналов. СПб.: Питер, 2002.

6.2.Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в средеLMSMOODLE и др. образовательные и библиотечные ресурсы):

- 1. Микросхемы фирмы STMicroelectronics http://www.st.com
- 2. Информационно-справочные системы и профессиональные базы данных HTБ https://www.lib.tpu.ru/html/irs-and-pdb
- 3. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 4. Электронно-библиотечная система «ZNANIUM.COM» https://new.znanium.com/
- 5. Электронно-библиотечная система «Юрайт» https://urait.ru/
- 6. Научная электронная библиотека www.elibrary.ru

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

OwnCloud Desktop Client; 7-Zip; Adobe Acrobat Reader DC; AkelPad; Cisco Webex Meetings; Document Foundation LibreOffice; Google Chrome; Microsoft Office 2007 Standard Russian Academic; Mozilla Firefox ESR; PTC Mathcad 15 Academic Floating; Tracker Software PDF-XChange Viewer; WinDjView; Zoom Zoom

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для

практических и лабораторных занятий:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов,	Комплект оборудования для проведения лабораторных работ:
	курсового проектирования,	
	консультаций, текущего	Осциллограф цифровой запоминающий АКИП-4122/1 - 7
	контроля и промежуточной	ШТ
	аттестации (учебная	Компьютер - 10 шт.; Принтер - 1 шт
	лаборатория)	
	634034, Томскаяобласть, г.	
	Томск, Ленина проспект, 30,	
	строен.1	
	ауд. 211	

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 12.04.04 Биотехнические системы и технологии, профиля Биомедицинская инженерия» (приема 2020 г., очная форма обучения).

Разработчик(и):

Должность	ФИО	
Доцент	И.А.Лежнина	
Доцент	С.Н.Торгаев	

Программа одобрена на заседании ОЭИ ИШНК	СБ (протокол от «30» <u>июня</u> 2020 г. №35).
Руководитель выпускающего отделения,	Auto
к.т.н,	/П.Ф. Баранов/
	подпись

Лист изменений рабочей программы дисциплины¹:

Учебный год	Содержание /изменение	Обсуждено на заседании Отделения электронной инженерии. (протокол)
2021/22 учебный год	 Обновлены планируемые результаты обучения по дисциплине. Обновлено содержание разделов дисциплины. Обновлен список литературы. Обновлен перечень профессиональных баз 	OT 30.08.2021 № 54

-

 $^{^{1}}$ Ежегодное обновление программы с учетом развития науки, культуры, экономики, техники и технологий, социальной сферы.