МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Директор Инженерной школы новых производственных технологий
А.Н. Яковлев
«30» 06 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2017 г. ФОРМА ОБУЧЕНИЯ ОЧНАЯ

Методы исследования материалов и процессов Направление подготовки/ 22.03.01 Материаловедение и технологии материалов специальность Образовательная программа Материаловедение и технологии материалов (направленность (профиль)) Специализация Наноструктурные материалы Уровень образования высшее образование - бакалавриат Курс семестр Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 32 Контактная (аудиторная) Практические занятия 32 работа, ч Лабораторные занятия 16 ВСЕГО 80 Самостоятельная работа, ч 100 итого, ч 180

Вид промежуточной аттестации	экзамен	Обеспечивающее подразделение	Отделение материаловедения ИШНПТ
Заведующий кафедрой - руководитель ОМ на правах кафедры ИШНПТ	Ath	~~	Клименов В.А.
Руководитель ООП	als	ef /	Ваулина О.Ю.
Преподаватель			Кульков С.Н.

2020 г.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 6. Общей характеристики ООП) состава компетенций для подготовки к

профессиональной деятельности.

Код	Наименование	Результаты		авляющие результатов освоения (дескрипторы компетенций)
компетенции	компетенции	освоения ООП	Код	Наименование
ПК(У)-5	Готов выполнять комплексные исследования и испытания при изучении материалов и изделий, включая стандартные и сертификационные, процессов их производства, обработки и модификации	P11	ПК(У)- 5.310 ПК(У)- 5.У10 ПК(У)- 5.В10	Знает основные структурные методы исследования материалов, основные способы расшифровки (индицирования) рентгенограмм и электронограмм Умеет обрабатывать и анализировать экспериментальные данные, расшифровывать (индицировать) рентгенограммы и электронограммы Владеет опытом проведения исследований структуры материалов и процессов на экспериментальном оборудовании и анализа полученных результатов на основе современных информационных технологий

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к модулю направления подготовки базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	I	
Код	Наименование	Компетенция
РД-1	Применять знания структурных методов исследования материалов.	
РД-2	Применять знания основных способов расшифровки (индицирования) рентгенограмм при решении профессиональных задач.	
РД-3	Выполнять обработку и анализ экспериментальных данных, расшифровку рентгенограмм.	HICOV) 5
РД-4	Применять знания основных способов расшифровки (индицирования) электронограмм при решении профессиональных задач.	ПК(У)-5
РД-5	Выполнять обработку и анализ экспериментальных данных, расшифровку электронограмм.	
РД-6	Применять знания структурных методов исследования материалов в профессиональной деятельности.	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.	РД-1	Лекции	4
Методы исследования структуры		Практические занятия	2
материалов		Самостоятельная работа	12
Раздел (модуль) 2.	РД-2	Лекции	16
Рентгеноструктурный анализ	РД-3	Лабораторные работы	10
в материаловедении	РД-6	Практические занятия	22
		Самостоятельная работа	58
Раздел (модуль) 3.	РД-4	Лекции	12
Электронная микроскопия	РД-5	Лабораторные работы	6
материалов	РД-6	Практические занятия	8
		Самостоятельная работа	30

Содержание разделов дисциплины:

Раздел 1. Методы исследования структуры материалов

Под понятием структура понимают совокупность устойчивых связей рассматриваемого объекта. Структура реальных материалов — сложная динамическая система со свойствами нелинейности, неравновесности и необратимости. Известно, что многие практически важные свойства кристаллов зависят не столько от правильного, периодического расположения атомов в объеме, сколько от различного типа нарушений этой периодичности. Исследование дефектов кристаллического строения является одной их важнейших задач современного материаловедения.

Темы лекций:

- 1. Классификация методов исследования
- 2. Выбор оптимального метода исследования
- 3. Современная классификация структур материалов

Темы практических занятий:

1. Выбор структурного метода исследования материала

Раздел 2. Рентгеноструктурный анализ в материаловедении

Методами рентгеноструктурного анализа (PCA) изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и т. д. Это основной метод определения структуры кристаллов. При их исследовании PCA дает наиболее достоверную информацию. При этом анализу могут быть подвергнуты не только регулярные монокристаллические объекты, но и менее упорядоченные структуры, такие как жидкости, аморфные тела, жидкие кристаллы, поликристаллы и др.

Темы лекций:

- 1. Взаимодействие рентгеновского излучения с веществом
- 2. Основная формула рентгеноструктурного анализа
- 3. Классификация методик рентгеноструктурного анализа
- 4. Качественный фазовый анализ
- 5. Анализ процессов пластической деформации и релаксации напряжений
- 6. Исследование твердых растворов
- 7. Рентгенографическое определение напряжений

Темы практических занятий:

- 1. Плоскости и направления. Индексы Миллера
- 2. Рентгенограмма. Трудности расшифровки рентгенограмм

- 3. Работа с картотекой веществ
- 4. Определение типа и параметра кристаллической решётки
- 5. Методики определения физического уширения кристаллической решётки
- 6. Определение ОКР и микроискажений в поликристаллических материалах
- 7. Определение напряжений методом « $\sin^2 \psi$ »

Названия лабораторных работ:

- 1. Устройство и принцип работы оборудования типа ДРОН для получения дифрактограмм
- 2. Индицирование рентгенограммы. Определение типа решётки Браве и размеров элементарной ячейки
- 3. Определение внутренних напряжений в металлах

Раздел 3. Электронная микроскопия материалов

Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическом микроскопом в видимом или ультрафиолетовом свете. Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т.е. различать как отдельные объекты, отстоящие друг от друга всего на 2A (0,2 нм или 0,0002 мкм) или даже меньше.

Темы лекций:

- 1. Взаимодействие электронов с веществом. Формирование изображения в электронном микроскопе
- 2. Приготовление образцов для электронной микроскопии, сравнение различных методов
- 3. Просвечивающая электронная микроскопия
- 4. Растровый электронный микроскоп. Принцип работы, области применения. Формирование изображения в растровом микроскопе

Темы практических занятий:

- 1. Основные узлы электронного микроскопа. Разрешающая способность микроскопа
- 2. Индицирование электронограмм. Основные правила при индицировании
- 3. Особенности применения ПЭМ и РЭМ при исследовании материалов

Названия лабораторных работ:

- 1. Устройство и принцип работы просвечивающего электронного микроскопа.
- 2. Получение электронограмм и их индицирование.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение индивидуальных заданий;
- Подготовка к практическим и лабораторным занятиям;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

1. Анисович А.Г. Рентгеноструктурный анализ в практических вопросах материаловедения / А.Г. Анисович. — Минск: Белорусская наука, 2017. — 207 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL:

- https://e.lanbook.com/book/106683 (Дата обращения: 15.04.2017).
- 2. Ковенский И.М. Методы структурного анализа материалов нефтегазового оборудования и конструкций: учебное пособие / И.М. Ковенский, А.А. Неупокоева. Тюмень: ТюмГНГУ, 2013. 68 с. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/55428 (Дата обращения: 15.04.2017).
- 3. Современные методы структурного анализа в материаловедении: учебное пособие [Электронный pecypc] C.H. Кульков, С.П. Буякова; Национальный (ТПУ). исследовательский Томский политехнический университет компьютерный файл (pdf; 1.68 MB). — Томск: Изд-во ТПУ, 2011. — Заглавие с титульного экрана. — Электронная версия печатной публикации. — Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader. – Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m49.pdf

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Научно-техническая библиотека ТПУ. https://www.lib.tpu.ru/
- 2. Научно-электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 3. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 4. Электронно-библиотечная система «Юрайт» https://urait.ru/
- 5. Электронно-библиотечная система «ZNANIUM.COM» https://new.znanium.com/ Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с Перечнем лицензионного программного обеспечения ТПУ):

7-Zip;

Adobe Acrobat Reader DC;

Adobe Flash Player:

AkelPad;

Cisco Webex Meetings;

Google Chrome:

Microsoft Office 2007 Standard Russian Academic;

Mozilla Firefox ESR;

ownCloud Desktop Client;

Tracker Software PDF-XChange Viewer;

WinDjView;

Zoom Zoom

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических занятий:

Nº	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Усова улица, 7, 144	Комплект оборудования для проведения занятий по основным разделам дисциплины Доска аудиторная настенная - 1 шт.; Комплект учебной мебели на 36 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 22.03.01 Материаловедение и технологии материалов / специализация «Наноструктурные материалы» (прием 2017 г., очная форма обучения).

Разработчик(и):

Должность	Долгись	ФИО
доцент	Daps	Е.А. Даренская

Программа одобрена на заседании кафедры наноматериалов и нанотехнологий Института физики высоких технологий (протокол от $\cancel{\cancel{e}}\cancel{\cancel{y}}$)» июня 2017 г. № 4).

Заведующий кафедрой - руководитель ОМ на правах кафедры ИШНПТ

_/В.А. Клименов/

подпись

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании Отделения (протокол)
2018/2019 учебный год	1. Изменена система оценивания	№ 7 от 30.08.2018 г.
2019/2020 учебный год	1. Обновлено содержание разделов дисциплины 2. Обновлен список литературы, в том числе ссылок ЭБС.	№19/1 от 01.07.2019 г.
2020/2021 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем	№ 35 от 29.06.2020 г.