## ТОМЅК POLYTECHNIC UNIVERSITY

**APPROVED BY** Director of the School of Advanced Manufacturing Technologies Alexey N. Yakovlev

Course Name Condition Monitoring and Reliability Inspection of Materials and Parts

Field of Study: Major 22.04.01 Material Science and Technologies

Programme name: Material Science

Level of Study: Master Degree Programme

Year of admission: 2020

Semester, year: 3, 2021

ECTS: 6 Total Hours: 216 Contact Hours: 48

- Lectures: 16
- Labs: 16
- Practical experience: 16

Assessment: exam

**Division for Materials Science** 

Head of Division for Materials Science

Vasiliy A. Klimenov

Instructor(s)

Sergey V. Panin



## **Course Name**

## **Course Overview**

|                             | The aim of the subject is to introduce the principles and methods in the field technical                                                          |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives        | diagnostics and non-destructive testing to be applied for different materials and                                                                 |
|                             | structures. Special attention is paid to optical and acoustical methods and their                                                                 |
|                             | combination, as well as to novel information technologies in material science.                                                                    |
| Learning<br>Outcomes        | Professional competency includes knowing of issues on the research and development                                                                |
|                             | of novel materials and structures, in particular:                                                                                                 |
|                             | - materials for structural and functional applications for different industries, including                                                        |
|                             | electronics and medicine, and technology of surface hardening and coating;                                                                        |
|                             | - principles for design of novel materials – nanostructured, smart, gradient and                                                                  |
|                             | composite materials with ceramic, metal and polymer matrix;                                                                                       |
|                             | - technologic facilities and devices for surface hardening and coating deposition;                                                                |
|                             | - manufacturing processes for advanced materials;                                                                                                 |
|                             | - methods for investigation of properties and diagnostics of loaded materials and                                                                 |
|                             | suuciules,<br>physical and chamical models of materials and manufacturing processes:                                                              |
|                             | - law and regulatory issues of application of new materials                                                                                       |
|                             | The course involves lectures practical classes and laboratory works. Design and                                                                   |
| <b>Course Outline</b>       | operation principles of structural health monitoring systems and hasic of fracture                                                                |
|                             | mechanics for estimating materials mechanical state and predicting life time:                                                                     |
| Prerequisites               | Materials Science: Theory of materials structure: Physical and mechanical properties                                                              |
| (if available)              | of materials                                                                                                                                      |
| Course                      | • Methods for non-destructive testing:                                                                                                            |
|                             | <ul> <li>Acoustical methods for non-destructive testing and structural health</li> </ul>                                                          |
|                             | • Acoustical methods for non-destructive testing and structural nearth<br>monitoring: ultrasonic method, acoustic emission method, modal analysis |
|                             | for ultrasonic and low frequency methods, vibration-based methods:                                                                                |
| Structure                   | <ul> <li>Optical methods for condition monitoring (thin foil sensors) and strain</li> </ul>                                                       |
|                             | agoing using resistive and optical fiber sensors.                                                                                                 |
|                             | <ul> <li>Development of wireless (nower supply and data transfer) sensors for</li> </ul>                                                          |
|                             | • Development of whereas (power suppry and data transfer) sensors for<br>structural health monitoring.                                            |
|                             | Ontical microscopes Hardness testers X-ray diffractometer XRD-7000 Transmission                                                                   |
| Facilities and<br>Equipment | electron microscope JEM-2100. Scanning electron microscope JSM-7500. Polymer                                                                      |
|                             | specimen preparation line (grinders, mixers, extruders, thermopress, etc). Optical                                                                |
|                             | profilometer New View 6200, Nano indenter Nanotest 600 and G200 (MTS),                                                                            |
|                             | Universal electromechanic Inston 5582 and hydraulic BiSS UTM 150 testing                                                                          |
|                             | machines.                                                                                                                                         |
| Grading Policy              | In accordance with TPU rating system we use:                                                                                                      |
|                             | - Current assessment which is performed on a regular basis during the semester                                                                    |
|                             | by scoring the quality of mastering of theoretical material and the results of                                                                    |
|                             | practical activities (performance tests, perform tasks, problem solving). Max                                                                     |
|                             | score for current assessment is 60 points, $min - 40$ points.                                                                                     |
|                             | - Course final assessment (exam/ credit test) is performed at the end of the                                                                      |
|                             | semester. Max score for course final assessment is 40 points, $min - 22$ points.                                                                  |
|                             | The final rating is determined by summing the points of the current assessment during                                                             |
|                             | the semester and exam (credit test) scores at the end of the semester. Maximum                                                                    |
|                             | overall rating corresponds to 100 points, min pass score is 80.                                                                                   |

|                      | Class attendance will be taken into consideration when evaluating students'             |
|----------------------|-----------------------------------------------------------------------------------------|
| Course Policy        | participation in the course. Students are expected to actively engage in class          |
|                      | discussions about the assigned readings. Attendance is strictly controlled. All classes |
|                      | is obligatory to presence.                                                              |
| <b>Teaching Aids</b> | Compulsory Readings: Domestic and international scientific and engineering journals     |
| and Resources        | Structural health monitoring Engineering Structures Smart Structures and Sustang        |
|                      | Structural nealth monitoring, Engineering Structures, Smart Structures and Systems,     |
|                      | Structural Control & Health Monitoring, Earthquake Engineering & Structural             |
|                      | Dynamics, Iranian Journal of Environmental Health Science & Engineering, Sensors,       |
|                      | Smart Materials & Structures                                                            |
|                      | Smart Materials & Structures                                                            |
|                      | Additional Readings: Domestic and international scientific and engineering journals     |
|                      | Journal of Materials Research, Russian Chemical Bulletin, Computers & Structures,       |
|                      | Engineering economics, Future Generation Computer Systems, Journal of                   |
|                      | Environmental Management                                                                |
|                      |                                                                                         |
|                      | Internet:                                                                               |
|                      | http://shm.sagepub.com/                                                                 |
|                      |                                                                                         |
| Instructor (-s)      | Sergey V. Panin, svp@ispms.tsc.ru, 286904                                               |
|                      |                                                                                         |