

APPROVED BY Director of the School of Advanced Manufacturing Technologies Alexey N. Yakovlev

Course Name Modern surface hardening and coating technologies

Field of Study: Major 22.04.01 Material Science and Technologies

Programme name: Material Science

Level of Study: Master Degree Programme

Year of admission: 2020

Semester, year: 3, 2021

ECTS: 3 Total Hours: 108 Contact Hours: 48

- Lectures: 16
- Labs: 16
- Practical experience: 16

Assessment: exam

Division for Material Science

Head of Division

Boris S. Zenin

Instructor(s)

Course Name

Course Overview

	The main goal of the course can be structured into following objectives:
Course Objectives	to prepare students for getting new properties of technical materials with application
	of protective and hardening coatings;
	to develop students abilities for choose optimal technology for treatment the parts
	working in special condition.
	Professional competency includes knowing of issues on the research and development
	of novel materials and structures, in particular:
	- materials for structural and functional applications for different industries, including
	principles for design of novel materials panestructured smart gradient and
Learning	composite materials with ceramic metal and polymer matrix.
Outcomes	- technologic facilities and devices for surface hardening and coating deposition:
Outcomes	- manufacturing processes for advanced materials:
	- methods for investigation of properties and diagnostics of loaded materials and
	structures;
	- physical and chemical models of materials and manufacturing processes;
	- law and regulatory issues of application of new materials.
Course Outline	The course involves lectures, practical classes and laboratory works. Preparation of
	presentations on the themes
Prerequisites	Materials Science; Theory of materials structure; Physical and mechanical properties
(if available)	of materials.
	Service life of machine parts
Course	Surface hardening treatment
Structure	Hardening and protecting coating
	High-energy beam surface treatment
	Optical microscopes, Hardness testers, X-ray diffractometer XRD-7000, Transmission
	electron microscope JEM-2100, Scanning electron microscope JSM-7500, Polymer
Facilities and	specimen preparation line (grinders, mixers, extruders, thermopress, etc), Optical
Equipment	profilometer New View 6200, Nano indenter Nanotest 600 and G200 (MTS),
	Universal electromechanic Inston 5582 and hydraulic BiSS UTM 150 testing
	In accordance with TPU rating system we use:
Grading Policy	- Current assessment which is performed on a regular basis during the semester
	by scoring the quality of mastering of theoretical material and the results of
	practical activities (performance tests, perform tasks, problem solving). Max
	score for current assessment is 60 points, $\min - 40$ points.
	- Course final assessment (exam/ credit test) is performed at the end of the
	semester. Max score for course final assessment is 40 points, min -22 points.
	The final rating is determined by summing the points of the current assessment during
	the semester and exam (credit test) scores at the end of the semester. Maximum
	overall rating corresponds to 100 points, min pass score is 80.
	Class attendance will be taken into consideration when evaluating students'
Course Policy	participation in the course. Students are expected to actively engage in class
	discussions about the assigned readings. Attendance is strictly controlled. All classes
	is obligatory to presence.

Teaching Aids	Compulsory Readings:
and Resources	1. Damage in Composite Materials Ed. by G.Z. Voyaljis, Elsevier, New York, 1993.
	2. Physical Metallurgy. 4 th Ed. rev. And enhanced Ed. By R.W. Cohn, P.Haasen Amsterdam: Elsevier, 19962984 p.
	 Physical Mesomechanics of Materials Ed. by V.E Panin Cambridge Interscience Publishing, 1998.
	 Callister, William D., Jr., Materials Science and Engineering: An Introduction. – 5th edition - USA, 1999
	5. V.E.Panin, A.I. Slosman, B.S. Zenin, Modern Problem of Material Science and Technology of Materials and Coatings. – Tomsk, TPU, 2006
	 A.I. Slosman, B.S. Zenin, Modern Surface Hardening and Coating Technologies. – Tomsk, TPU, 2006
	Additional Readings:
	1. Journal of Material Science
	2. Journal of Composite Materials
	3. Metallurgical and Materials Transactions
	4. Composite Science and Technology.
	5. Materials Science and Engineering
Instructor (-s)	Boris S. Zenin, <u>bosezen@tpu.ru</u> , 564114