МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕР	ЖДАЮ	
Диреку	6/ИШЭ	
OW	Man_Man	гвеев А.С.
« 30»	06	2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2016 г. ФОРМА ОБУЧЕНИЯ очная

Физика ядерных реакторов Направление подготовки/ 14.05.02 Атомные станции: проектирование, специальность эксплуатация и инжиниринг Образовательная программа Nuclear power plants: design, operation and (направленность (профиль)) engineering / Атомные станции: проектирование, эксплуатация и инжиниринг Специализация Design and operation of nuclear power plants / Проектирование и эксплуатация атомных станций Уровень образования высшее образование - специалитет Курс 4 7,8 семестр Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 48 Практические занятия 32 Контактная (аудиторная) работа, ч Лабораторные занятия 32 ВСЕГО 112 Самостоятельная работа, ч 212 Р, ОЛОТИ 324

Вид промежуточной аттестации	экзамен 7	Обеспечивающее	НОЦ
	зачет 8	подразделение	И.Н. Бутакова
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-
Заведующий кафедрой - руководитель НОЦ И.Н. Бутакова		A. Jung	Заворин А.С.
на правах кафедры			
Руководитель ООП	Co	let !	Лавриненко С.В.
Преподаватель		A A	Кузьмин А.В.

2020 г.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного $OO\Pi$ (п. 6. Общей характеристики $OO\Pi$) состава компетенций для подготовки к

профессиональной деятельности.

Код компетенц	Наименование	Результаты	Составляющие результатов освоения (дескрипторы компетенций)	
ии	компетенции	ООП	Код	Наименование
	способностью анализировать нейтронно-		ПК(У)- 16.В2	Владеет опытом анализа нейтронно-физических процессов в активной зоне ядерных реакторов
	физические, технологические процессы		ПК(У)- 16.У2	Умеет анализировать нейтронно-физические процессы в активной зоне ядерных реакторов
ПК(У)-16	управления и защиты ЯЭУ	ПК(У)- 16.32	Знает закономерности протекания нейтронно-физических процессов в активной зоне ядерного реактора	
	способностью проводить нейтронно-физические и		ПК(У)- 17.В1	Владеет опытом расчета нейтронно-физических процессов в активной зоне ядерных реакторов
ПК(У)-17	теплогидравлические	ПК(У)- 17.У1	Умеет рассчитывать нейтронно-физические процессы в активной зоне ядерных реакторов	
	реакторов в стационарных и нестационарных режимах работы		ПК(У)- 17.31	Знает методы расчета нейтронно-физических процессов в активнов зоне ядерных реакторов
	способностью выполнять теплогидравлические, нейтронно-физические и		ПСК(У)-1.4.В4	Владеет опытом использования современных средств расчета нейтронно-физических процессов в активной зоне ядерных реакторов
ПСК(У)- 1.4	прочностные расчеты узлов и элементов	P17	ПСК(У)-1.4.У4	Умеет использовать современные средства расчета нейтронно- физических процессов в активной зоне ядерных реакторов
1.7	проектируемого оборудования с использованием современных средств		ПСК(У)-1.4.34	Знает современные средства нейтронно-физического расчета активной зоны ядерного реактора

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Компетенция	
Код	Наименование	компетенция
РД-1	Делать постановку и проводить решение критической задачи в одногрупповом приближении	ПК(У)-17
РД-2	Применять теорию экспоненциального опыта	ПК(У)-16
РД-3	Рассчитывать миграционные характеристики и эффекты реактивности	ПК(У)-16
РД-4	Описывать физические и конструктивные особенности реактора ИРТ-М, его систему управления и защиты	ПСК(У)-1.4

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел 1. Критические размеры ЯР в	РД1	Лекции	6
одногрупповом приближении		Практические занятия	8
		Лабораторные занятия	6
		Самостоятельная работа	26
Раздел 2. Критическая и условно-	РД1, РД2	Лекции	6
критическая задачи в кинетическом		Практические занятия	6
приближении		Лабораторные занятия	-

		Самостоятельная работа	26
Раздел 3. Критические размеры в	РД2	Лекции	6
возрастном и многогрупповом		Практические занятия	6
приближениях		Лабораторные занятия	-
		Самостоятельная работа	26
Раздел 4. Теория решеток	РД3	Лекции	6
		Практические занятия	4
		Лабораторные занятия	6
		Самостоятельная работа	26
Раздел 5. Температурные эффекты	РД3	Лекции	6
		Практические занятия	4
		Лабораторные занятия	6
		Самостоятельная работа	26
Раздел 6. Управление ЯР	РД2, РД3,РД4	Лекции	6
		Практические занятия	4
		Лабораторные занятия	6
		Самостоятельная работа	26
Раздел 7. Физические особенности ЯР	РД2, РД4	Лекции	6
на тепловых нейтронах		Практические занятия	-
		Лабораторные занятия	4
		Самостоятельная работа	28
Раздел 8. Особенности физики	РД3	Лекции	6
быстрых ЯР		Практические занятия	-
		Лабораторные занятия	4
		Самостоятельная работа	28

Содержание разделов дисциплины:

Раздел 1. Критические размеры ЯР в одногрупповом приближении

Формула четырех сомножителей. Критический размер ЯР. Влияние плотности вещества на критические параметры. Распределение потока нейтронов и тепловыделения в активной зоне ЯР без отражателя. Выравнивание тепловыделения по активной зоне. Уравнение нестационарного процесса диффузии.

Темы лекций:

- 1. Эффективный коэффициент размножения
- 2. Уравнение нестационарного процесса диффузии
- 3. Распределение потока нейтронов и тепловыделения в активной зоне ЯР без отражателя

Темы практических занятий:

- 1. Формула четырех сомножителей
- 2. Гомогенный реактор с отражателем в одногрупповом приближении
- 3. Квазикритическое уравнение реактора
- 4. Уравнение нестационарного процесса диффузии.

Названия лабораторных работ:

- 1. Основные особенности решения критической задачи в одногрупповом приближении
- 2. Влияние плотности вещества на критические параметры.
- 3. Выравнивание тепловыделения по активной зоне

Раздел 2. *Критическая и условно-критическая задачи в кинетическом приближении*

Интегрально-дифференциальное уравнение баланса нейтронов. Индикатрисарассеяния. Газокинетическое уравнение Больцмана, краевые условия, операторная форма.

Интеграл деления, интеграл упругих и неупругих соударений. Постановка условнокритической задачи. Смысл эффективного коэффициента размножения. Мера некритичности.

Темы лекций:

- 4. Интегрально-дифференциальное уравнение баланса нейтронов.
- 5. Индикатриса-рассеяния.
- 6. Газокинетическое уравнение Больцмана

Темы практических занятий:

- 5. Постановка условно-критической задачи
- 6. Условия критичности
- 7. Смысл эффективного коэффициента размножения

Раздел 3. Критические размеры в возрастном и многогрупповом приближениях

Математическая формулировка в возрастном приближении. Материальный параметр в приближении возраста и критический размер однородного ЯР с учетом и без учета резонансного поглощения. Условно-критическая задача в возрастном приближении. Двухгрупповой метод.

Темы лекций:

- 7. Математическая формулировка в возрастном приближении
- 8. Гомогенный реактор с отражателем в двухгрупповом приближении
- 9. Условно-критическая задача в возрастном приближении

Темы практических занятий:

- 8. Геометрический параметр реакторов различной формы
- 9. Материальный параметр в приближении возраста и критический размер однородного ЯР с учетом и без учета резонансного поглощения.
- 10. Многогрупповое приближение

Раздел 4. Теория решеток

Преимущества и недостатки гетерогенных ЯР с физической точки зрения. Коэффициент использования тепловых нейтронов. Размножение на быстрых нейтронах. Вычисление вероятности избежать резонансного захвата ф. Длина пробега нейтронов в решетке.

Темы лекций:

- 10. Преимущества и недостатки гетерогенных ЯР с физической точки зрения.
- 11. Классификация решеток. Основные предположения и допущения.
- 12. Метод вероятностей первых столкновений

Темы практических занятий:

- 11. Вычисление вероятности избежать резонансного захвата ф.
- 12. Размножение на быстрых нейтронах.

Названия лабораторных работ:

- 4. Теория экспоненциального опыта.
- 5. Длина пробега нейтронов в решетке.
- 6. Расчет коэффициент использования тепловых нейтронов

Раздел 5. Температурные эффекты

Графики температурного эффекта реактивности (ТЭР) и температурного коэффициента реактивности (ТКР). Ядерный ТРК. Оценка вклада в ядерный ТКР отдельных составляющих для ЯР с урановым топливом на начало кампании. Особенности динамики ЯР с учетом температурного эффекта. Оценка температурного и мощностного эффектов.

Темы лекций:

- 13. Температурные эффекты
- 14. Ядерный ТРК.
- 15. Оценка вклада в ядерный ТКР отдельных составляющих для ЯР с урановым топливом на начало кампании.

Темы практических занятий:

- 13. Особенности динамики ЯР с учетом температурного эффекта
- 14. Оценка температурного и мощностного эффектов.

Названия лабораторных работ:

- 7. Расчет эффективной температуры топлива.
- 8. Графики температурного эффекта реактивности (ТЭР) и температурного коэффициента реактивности (ТКР).
- 9. Особенности динамики ЯР с учетом температурного эффекта.

Раздел 6. Управление ЯР

Система управления и защиты (СУЗ). Теория центрального ПС в одногрупповом и двухгрупповом приближениях, сравнение результатов и рекомендации к применению. Принцип выбора физического веса ПС различного назначения. Ценность и эффективная доля запаздывающих нейтронов. Особенности пуска и останова ЯР.

Темы лекций:

- 16. Система управления и защиты (СУЗ).
- 17. Теория центрального ПС в одногрупповом и двухгрупповом приближениях, сравнение результатов и рекомендации к применению.
- 18. Принцип выбора физического веса ПС различного назначения.

Темы практических занятий:

- 15. Ценность и эффективная доля запаздывающих нейтронов
- 16. Особенности пуска и останова ЯР.

Названия лабораторных работ:

- 10. Расчет миграционных характеристик и эффектов реактивности
- 11. Расчет физического веса ПС различного назначения
- 12. Расчет ценности и эффективной доли запаздывающих нейтронов

Раздел 7. Физические особенности ЯР на тепловых нейтронах

Особенности физики водо-водяных энергетических реакторов (ВВЭР) с водой под давлением. Физические особенности водо-водяных энергетических Р с кипением в активной зоне (ВК). Физические особенности канальных графитовых и тяжеловодных ЯР с легководным кипящим теплоносителем. Конструктивные и физические особенности реактора ИРТ-Т.

Темы лекций:

- 19. Физические особенности ядерных реакторов на тепловых нейтронах
- 20. Физические особенности водо-водяных энергетических Р с кипением в активной зоне (ВК).

21. Физические особенности канальных графитовых и тяжеловодных ЯР с легководным кипящим теплоносителем.

Названия лабораторных работ:

- 13. Физические и конструктивные особенности реактора ИРТ-М
- 14. Особенности физики водо-водяных энергетических реакторов (ВВЭР) с водой под давлением.

Раздел 8. Особенности физики быстрых ЯР

ЯР на быстрых нейтронах, работающие в бридерном режиме. Теплофизические особенности. Период удвоения, его расчет в различных случаях. Физический расчет ЯР. Определение критической массы и коэффициента воспроизводства. Выравнивание энерговыделения. Выбор оптимального варианта.

Темы лекций:

- 22. Особенности физики быстрых ядерных реакторов
- 23. Теплофизические особенности.
- 24. Период удвоения, его расчет в различных случаях

Названия лабораторных работ:

- 15. Система управления и защиты реактора ИРТ-М.
- 16. Выравнивание энерговыделения. Выбор оптимального варианта.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
 - Изучение тем, вынесенных на самостоятельную проработку;
 - Поиск, анализ, структурирование информации;
 - Выполнение домашних заданий;
 - Подготовка к лабораторным работам, к практическим и семинарским занятиям;
 - Анализ научных публикаций по заранее определенной преподавателем теме;
 - Подготовка к контрольной работе и экзамену.

6. Учебно-методическое и информационное обеспечение дисциплины

16.1. Учебно-методическое обеспечение

Основная литература:

- 1. Красников, П. В. Расчеты физических характеристик ядерных реакторов : учебное пособие / П. В. Красников, С. В. Столотнюк, Я. Д. Столотнюк. Москва : МГТУ им. Н.Э. Баумана, 2014. 95 с. —Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/58558 (дата обращения: 22.07.2020). Режим доступа: для авториз. пользователей.
- 2. Наумов, В. И. Физические основы безопасности ядерных реакторов : учебное пособие / В. И. Наумов. 2-е изд. Москва : НИЯУ МИФИ, 2013. 148 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/75778 (дата обращения: 22.07.2020). Режим доступа: для авториз. пользователей.
- 3. Кузьмин А.М., Моделирование физических процессов в энергетических ядерных реакторах на быстрых нейтронах : учебное пособие для вузов / А.М. Кузьмин, А.Н. Шмелев,

В.А. Апсэ. - М. : Издательский дом МЭИ, 2015. - 128 с. - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : https://www.studentlibrary.ru/book/ISBN9785383007334.html (дата обращения: 22.07.2020). - Режим доступа : по подписке.

Дополнительная литература:

1. Матвеев В.И., Техническая физика быстрых реакторов с натриевым теплоносителем : учебное пособие / В.И. Матвеев, Ю.С. Хомяков; под ред. чл.-корр. РАН В.И. Рачкова. - М. : Издательский дом МЭИ, 2012. - 356 с. - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : https://www.studentlibrary.ru/book/ISBN9785383007174.html (дата обращения: 22.07.2020). - Режим доступа : по подписке.

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Росатом, Госкорпорация (полный цикл в сфере атомной энергетики и промышленности, Москва) http://www.rosatom.ru/
- 2. «Концерн Росэнергоатом», ОАО (компания, эксплуатирующая АЭС России, Москва) http://www.rosenergoatom.ru/
 - 3. ТВЭЛ, ОАО (производитель ядерного топлива, Mockba) http://www.tvel.ru/
- 4. ВНИИАМ Всероссийский научно-исследовательский институт атомного энергетического машиностроения (ОАО «ВНИИАМ») http://www.vniiam.ru/
- 5. Nuclear.Ru (информационно-аналитический портал для специалистов атомной отрасли) http://www.nuclear.ru/
- 6. Atominfo.Ru (информационно-аналитический сайт для специалистов атомной отрасли) http://www.atominfo.ru/
 - 7. Атомная энергетика в Томской области http://www.aes.tomsk.ru/

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

- 1. При освоении теоретических разделов дисциплины используются: технические средства аудитории с АСУ ПДС (компьютеры);
 - 2. программное обеспечение АСУ ПДС;
 - 3. Windows 7/8/10;
 - 4. MS Office 2010/2013/2015;
 - 5. Matlab;
 - 6. Mathcad;
 - 7. Document Foundation LibreOffice;
 - 8. Cisco Webex Meetings;
 - 9. Zoom Zoom.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

No	Наименование специальных помещений	Наименование оборудования
1	Аудитория для проведения учебных	– Комплект учебной мебели на 42 посадочных мест;
	занятий всех типов, курсового	– Компьютер - 1 шт.;
	проектирования, консультаций, текущего	 Проектор - 1 шт.

2	контроля и промежуточной аттестации 634034, Томская область, г. Томск, Ленина проспект, 30a, 302 Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Ленина проспект, 30a,38	- - - -	Комплект учебной мебели на 30 посадочных мест; Крепление для проектора Perless PRG-UNV - 1 шт.; Компьютер - 1 шт.; Проектор - 1 шт.
3	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Ленина проспект, 30a,32	i	Комплект учебной мебели на 18 посадочных мест; Компьютер - 20 шт.; Проектор - 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг (приема 2016 г., очная форма обучения).

Разработчик:

Должность	Степень	ФИО
Доцент НОЦ И.Н. Бутакова	к.т.н.	А. В. Кузьмин

Программа одобрена на заседании кафедры АТЭС (протокол от 11.02.2016 г. № 2).

Заведующий кафедрой - руководитель НОЦ И.Н. Бутакова на правах кафедры,

д.т.н, профессор

/А.С. Заворин

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании НОЦ И.Н. Бутакова (протокол)
2017/2018 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание разделов дисциплины 4. Обновлен список литературы, в том числе ссылок ЭБС	№ 19 от 18.05.2017
2018/2019 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание разделов дисциплины 4. Обновлен список литературы, в том числе ссылок ЭБС 5. Изменена система оценивания	№ 11 от 19.06.2018