ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2020 г

ФОРМА ОБУЧЕНИЯ очная

	Технологии нульмерных нанообъектов					
Направление подготовки/ специальность						
Образовательная программа (направленность (профиль))	Производство изделий из наноструктурных материалов и аддитивные технологии					
Специализация	Производство изделий из нано	структурных материалов и аддитивные технологии				
Уровень образования	высшее образование – магистра	гура				
Курс	1 семестр 1					
Трудоемкость в кредитах		3				
(зачетных единицах)						
Заведующий кафедрой - руководитель ОМ на правах кафедры ИШНПТ	p. They	В.А. Клименов				
Руководитель ООП	0.19	О.Л. Хасанов				
Преподаватель	Г.В. Лямина					

1. Роль дисциплины «Технологии нульмерных объектов» в формировании компетенций выпускника:

Элемент образователь		Код		Индикаторы достижения компетенций		Составляющи	не результатов освоения (дескрипторы компетенции)
ной программы (дисциплина, практика, ГИА)	Семестр	компете нции	Наименование компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
Дисциплина	1	ПК(У)-4	Способен прогнозировать влияние микро- и наномасштаба на механические, физические,		Выбирает оптимальную технологию получения 0-мерных	ПК(У)-4.2В1	Владеет опытом определения оптимальной технологии для получения нанопорошков, наночастиц и квантовых точек в зависимости от требований к свойствам 0-мерных объектов
			поверхностные и другие свойства материалов при выборе и реализации технологии получения объемных наноматериалов	И.ПК(У)-4.2	наноматериалов в зависимости от требований к их свойствам	ПК(У)-4.2У1 ПК(У)- 4.2У31	Умеет выявлять основные отличия свойств нанопорошков и наночастиц от объемных материалов Знает способы синтеза нанопорошков и квантовых точек, методы их стабилизации и извлечения из реакционной среды
		ПК(У)-5	Способен реализовывать технологии получения наноматериалов с учетом ресурсоэффективности и экологической безопасности	И.ПК(У)-5.1	Выбирает оптимальную технологию получения 0-мерных наноматериалов в зависимости от требований к готовой продукции	ПК(У)-5.1В1	Владеет опытом определения критериев для сравнения технологий получения нанопорошков, наночастиц и квантовых точек в зависимости от требований к готовой продукции Умеет формулировать проблему влияния сырья (нанопорошков, наночастиц и квантовых точек) на свойства готовой продукции Знает основные группы методов синтеза нанопорошков, наночастиц и квантовых точек

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине	Индикатор достижения	Наименование раздела дисциплины	Методы оценивания (оценочные
Код РД 1	Наименование Демонстрирует знания химических способов синтеза нанопорошков и квантовых точек	И.ПК(У)-4.2	Раздел (модуль) 1. Способы синтеза и стабилизации нанопорошков и квантовых точек	мероприятия) Тестирование, кейс
РД 2	Определяет возможные пути стабилизации наночастиц и способы извлечения из реакционной среды	И.ПК(У)-4.2	Раздел (модуль) 1.	Тестирование, кейс
РД 3	Демонстрирует знания свойств наночастиц и их основные отличия от объемных наноматериалов	И.ПК(У)-4.2	Раздел (модуль) 1.	Тестирование, кейс
РД 4	Определяет возможные технологии синтеза в зависимости от свойств нанопорошков	И.ПК(У)-4.2	Раздел (модуль) 2. Выбор технологии синтеза нанопорошков и квантовых точек в зависимости от требований к готовой продукции	Отчет по индивидуальному проекту, кейс
РД 5	Определяет критерии для сравнения технологий получения нанопорошков, наночастиц и квантовых точек в зависимости от требований к готовой продукции	И.ПК(У)-5.1	Раздел (модуль) 2.	Отчет по индивидуальному проекту, кейс, составление теста
РД 6	Формулирует проблему влияния сырья (нанопорошков, наночастиц и квантовых точек) на свойства готовой продукции	И.ПК(У)-5.1	Раздел (модуль) 2.	Отчет по индивидуальному проекту, кейс, составление теста
РД 7	Демонстрирует знания основных групп методов синтеза нанопорошков, наночастиц и квантовых точек	И.ПК(У)-5.1	Раздел (модуль) 1.	Тестирование, кейс
РД 8	Предлагает оптимальную технологию получения нанопорощков в зависимости от требований к готовой продукции	И.ПК(У)-5.1	Раздел (модуль) 2.	Отчет по индивидуальному проекту, кейс

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом — «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом
		практической деятельности, необходимые результаты обучения сформированы, их качество оценено
		количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической
		деятельности, необходимые результаты обучения сформированы, качество ни одного из них не
		оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической
		деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено
		минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке		
90%÷100%	$18 \div 20$	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом	
			практической деятельности, необходимые результаты обучения сформированы, их качество оценено	
			количеством баллов, близким к максимальному	
70% - 89%	14 ÷ 17	_	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности,	
			необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным	
			количеством баллов	

55% - 69%	11 ÷ 13	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической
			деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено
			минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

№	Оценочные мероприятия	Примеры типовых контрольных заданий			
1	Отчет по	Темы ИДЗ:			
	индивидуальному	Технологии получения наночастиц оксида алюминия			
	проекту	Технологии получения наночастиц оксида циркония			
		Технологии получения наночастиц оксида кремния			
		Технологии получения наночастиц карбида кремния			
		Технологии получения наночастиц селенида кадмия			
		Задание			
		Необходимо подобрать не менее трех технологий получения выбранного материала. Для одной технологии			
		можно использовать как один, так и несколько источников. Технология должна быть разобрана подробно,			
		включая характеристики прекурсоров, оборудования. В заключении необходимо сравнить технологии по			
		критериям: характеристика готового продукта, дороговизна и сложность аппаратурного оформления, сложность			
_		технологии, возможное применение.			
3	Тестирование	Пример теста			
		1.Для очистки водоемов используется магнетит, найдите формула магнетита?			
		a.FeO			
		$6.\alpha$ -Fe2O3			
		B.β-Fe3O4			
		c.γ-Fe2O3			
		2.В химическом методе для получения оксида железа используется FeSO4·7H2O, 2FeCl3•6H2O и NH3•H2O,			
		закончите реакцию.			
		FeSO4·7H2O + 2FeCl3•6H2O + NH3•H2O>			
		3.Цвет полученного в результате реакции раствора: FeSO4·7H2O +2FeCl3•6H2O + NH3•H2O>			
		а.мутно-коричневый			
		б.черный			

№	Оценочные мероприятия	Примеры типовых контрольных заданий
		в.светло-коричневый
		с.зеленый
		4. Реактивы, использующися для синтеза магнетита химическим методом.
		a.FeCl3 1.NH3
		6. FeSiO ₃ 2. NH4OH
		B. FeC_2O_4 3. $C_6H_5NH_2$
		c. FeCO ₃ 4. NH4N03
		5. В методе лазерного синтеза в каком отделе установки (укажите число) происходит лазерная абляция мишени?
		gas or air 12 10 laser beam 11 11 11 11 11 11 11 11 11 11 11 11 11
		Ваш ответ
		6. При снижении энергии на сколько процентов, осуществляется полная смена газовой смеси в методе лазерного
		испарения мишени?
		a.10%
		6.5%
		в.7%
		c.9%
		7. Разбирая схему, понимаем суть метода: Укажите номер на ячейку.
		gas or air 12 10 laser beam 11 4 4 7 9
		а.Откуда поступает газ ?
		б.Где находится мишень?
		в.Источник лазерного излучения?
		г.Где происходит лазерная абляция?

№	Оценочные мероприятия	Примеры типовых контрольных заданий			
		д. Циклон (осаждаются крупные осколки мишени) с. Механический фильтр к. Вентилятор л. Откуда выходит газ? 8. В методе получения магнетита способом термического разложения, если на сульфат желез аммония полуаем (реакция обмена) Укажите продукты. а. гидроксид железа б.сульфат аммония в. оксид железа г.оксалат железа д.гидроксид аммония 9. В методе термического разложения как влияет температура на размер частиц? а. Низкая температура 1. Маленькие наночастицы б. Повышенная температура 2. Большие наночастицы			
		10. Нагревая оксалат железа(желтого цвета) получаем пирофорное Покажите со стрелки			
		черный зеленый Оксалат железо коричневый Fe Fe_2O_3 FeO			
		11. Как известно, магнетит проявляет магнитные свойства. Меняет ли магненит свою криста под действием магнитного поля? Да Нет Возможно	ллическую структуру		
		 Пример 2 № ФИО 1 Удалите лишнее слово. Поясните ответ. 	Максимальный балл 1		
		Квантовые точки коллоиды фрактальные кластеры			

Nº	Оценочные мероприятия		Примеры типовых контрольных заданий					
		2 I	Почему возникали пробл	лемы при отнесении р	астворов ВМС к ист	гинным растворам	3	
		((дайте развернутый ответ	<u>-</u>)				
			Почему именно углерод и		2			
		4 I	Как решается проблема с	табилизации наночасти	ц оксида алюминия п	ри синтезе?	3	
		I	Приведите возможные пр	римеры. Сформулируйт	е достоинства и недос	статки разных		
		I	подходов.					
		5 (Существенное влияние ра	азмера частиц на электр	онные свойства		1	
		N	может проявляться тольк	о для очень маленьких	кристаллитов.			
		6 I	Почему меняя размеры кн или поглощать свет задан	вантовых точек, можно ньой длины волны	добиться того, что он	и будут излучать	4	
		7	Какую функцию выполня 1) Восстанови 2) Реактив 3) Прекурсор	1				
		Q (4) Продукт рес Соотнесите характерные		и получения напопоро	MILLO OTHOMBHING	2	
			Метод	Метод	и получения нанопоре Метод	Эшка алюминия	2	
			электроэрозионного	электрического	механического			
			диспергирования	взрыва проводников	измельчения			
					сплавов	_		
		ı	 низкие энергетические затраты; получение порошков особо высокого качества; использование только особо чистых сплавов алюминия в качестве исходного сырья; 					
			1	омостабильность получ	енного порошка:			
				ние любых сплавов алк		одного сырья;		
				оизводительность мето,		1 /		
			• малое распр	ределение частиц получ	енного порошка по ра	азмерам.		

№	Оценочные мероприятия	Примеры типовых контрольных заданий				
		9 Почему при получении наночастиц серебра методом «зеленого» синтеза не требуется введения стабилизатора?	3			
		Bcero	20			
4	Кейс	Обнаружено на предприятии, что в порошке оксида алюминия содержится примесь натрия, содержание которого превышает допустимые нормы. Партия порошка уже закуплена и сменить сырье нет возможности. Предложите способ решения этой проблемы при условии, что очистка должна быть выполнена на данном предприятии с использованием ресурсов традиционного керамического производства. Докажите свое решение возможными экспериментальными результатами.				
5	Экзамен	 Почему для полупроводников электронные свойства зависят от размера частиц сильнее, чем изоляторов? Какое преимущество при синтезе наночастиц дает использование нескольких сборников ча пиролиза? Какое влияние на положение и интенсивность спектра в УФ-, видимой области оказывает фот полупроводников и металлов? В чем разница между металлами и полупроводниками в данно развернутый ответ. Сравните между собой способы получения частиц на установке нанораспылительной сушки растворов и суспензий. Дайте критериальное сравнение Какие недостатки метода химического осаждения из паровой фазы при получении фуллерено Укажите возможный размер частиц для каждого спектра (перетащите текст в обозначенные об разверение) Длина волны, нм Отметьте составляющие установки для получения порошков упариванием в вакууме 	астиц в установке орма частиц ом случае? Дайте NanoSpray B-90 из			

N₂	Оценочные мероприятия	Примеры типовых	контрольных заданий			
		 Какую функцию выполняет представленное обор Cr₂O₃ из раствора K₂Cr₂O₇. 	рудование при электрохимическом получении наночастиц			
		Потенциостат	электроосаждение			
		Сушильный шкаф (T _{max} =200 °C)	выпаривание раствора			
		Муфельная печь (T _{max} =1100 °C)	прокаливание порошка для удаления остатков влаги и диоксида серы			
		9. Укажите основное функциональное назначение для каждого типа наночастиц				
		ZnO	Повышение эффективности фотоката лиза			
		Наночастицы магнетита	Адресная доставка лекарств			

N₂	Оценочные мероприятия	Примеры типовых контрольных заданий						
	Наночастицы полупроводников Усиление люминесценции		Усиление люминесценции					
		10. В каких случаях поглощение кванта света приводит к излучению?						

5. Методические указания по процедуре оценивания

Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания					
Экзамен	Проводится на платформе электронного курса, включает 10 вопросов открытого и закрытого типа. Максимальная оценка 20 баллов.					
Отчет по	Индивидуальный проект выполняется в рамках самостоятельной работы, проверяется преподавателем на					
индивидуальному	практических занятиях. Оценивание проводятся преподавателем по отдельным этапам (технологиям).					
проекту	Мероприятие позволяет умения, заявленные в качестве результатов обучения по дисциплине. Оценка (максимум					
	10 баллов за технологию).					
Кейс	Проводится в письменной форме (отчет) и устной на практических занятиях в виде защиты проекта.					
	Максимальная оценка – 20 баллов.					
Тестирование	Тестирование проводится во время практических занятий и позволяет контролировать знания и умения,					
_	усвоенные, в основном в ходе лекций и самостоятельной работы. Методика оценки – сравнение с эталоном.					
	Время – 15-30 минут. В рамках дисциплины проводится 4 теста, каждый по 15 баллов					
Составление	Студент составляет тесты по своим технологиям. Оцениваются преподавателем и включаются в состав итогового					
тестов	теста. Максимальная оценка 5 баллов за каждый их трех тестов.					

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН ДИСЦИПЛИНЫ 2020/2021 чебный год

оценки		И	<u>Дисциплина</u>	Лекции	8	час.
«Отлично»	Отлично» A 90 - 100 «Технологии нульмерных объектов»		Практ. занятия	40	час.	
		баллов		Лаб. занятия	-	час.
	В	80 — 89 баллов	<u>по направлению 22.04.01</u> Материаловедение и технологии	Всего ауд. работа	48	час.
«Хорошо»	С	70 – 79 баллов	<u>материалов</u>	CPC	60	час.
«Удовл.»	D	65 – 69 баллов		итого	108	час.
	Е	55 — 64 баллов			6	з.е.
Зачтено	P	55 - 100 баллов				
Неудовлетв орительно / незачтено	F	0 - 54 баллов				

Результаты обучения по дисциплине (сформулировать для конкретной дисциплины):

Планируемые результаты обучения по дисциплине					
Код	Наименование				
		компетенции			
РД 1	Демонстрирует знания химических способов синтеза нанопорошков и квантовых точек	И.ПК(У)-4.2			
РД 2	Определяет возможные пути стабилизации наночастиц и способы извлечения из реакционной	И.ПК(У)-4.2			
DH 2	среды	TI FIIC(XI) A O			
РД 3	Демонстрирует знания свойств наночастиц и их основные отличия от объемных наноматериалов	И.ПК(У)-4.2			
РД 4	Определяет возможные технологии синтеза в зависимости от свойств нанопорошков	И.ПК(У)-4.2			
РД 5	Определяет критерии для сравнения технологий получения нанопорошков, наночастиц и квантовых точек в зависимости от требований к готовой продукции	И.ПК(У)-5.1			
РД 6	Формулирует проблему влияния сырья (нанопорошков, наночастиц и квантовых точек) на свойства готовой продукции	И.ПК(У)-5.1			
РД 7	Демонстрирует знания основных групп методов синтеза нанопорошков, наночастиц и квантовых точек	И.ПК(У)-5.1			
РД 8	Предлагает оптимальную технологию получения нанопорощков в зависимости от требований к готовой продукции	И.ПК(У)-5.1			

Оценочные мероприятия:

Для дисциплин с формой контроля - экзамен							
	Оценочные мероприятия Кол-						
	ВО						
	Текущий контроль:		80				
TK1	Отчет по индивидуальному	30					
	проекту						
ТК2	Кейс	15					
ТК3	Тестирование	20					
TK4	Составление тестов	15					
	Промежуточная аттестация:						
ПА1	Экзамен	1	20				
	ИТОГО	•	100				

Дополнительные баллы							
	Учебная деятельность /	Кол-	Баллы				
	оценочные мероприятия	во					
ДП1	Дополнительные вопросы на	2	10				
	лекции						
	ИТОГО		10				

Неделя	Результат обучения по дисциплине	Вид учебной деятельности по разделам	Кол-во часов		Оцени вающи е меропр иятия	Кол-во баллов	Техноло гия проведе ния занятия (ДОТ)	Информационное обеспечение		
He	Результа по дис		А уд	Сам .			(431)	Учебная литерату ра	Интерн ет- ресурс ы	Видео- ресурс ы
		Раздел 1. Способы синтеза и стабилиз	ации	нан	опороц	иков и кв	антовы	х точек		
10	РД1	Лекция. История развития технологий получения наночастиц металлов и их соединений. Классификация современных способ получения нанопорощков и квантовых точек	2	4				ОСН 2 ДОП 1	ЭР 2	
	РД2	Лекция. Элементы коллоидной химии в технологии получения квантовых точек. Способы стабилизации наночастиц	2	4	ТК3	5		OCH 1	ЭР 2	
	РД3	Лекция. Получение наноразмерного оксида алюминия. Традиционные технологии и современные подходы	2	4	ТК3	5		OCH 1	ЭР 2	
11	РД7	Лекция. Получение квантовых точек полупроводниковых соединений	2	4				ОСН 1 ДОП 3 ДОП 4	ЭР 2	
		Раздел 2. Выбор технологии синтеза требований к готовой продукции		поро	шков и	квантов	ых точе)T
	РД4	Практические занятия Выбор и описание способов синтеза наночастиц						ОСН 1 ДОП 2	ЭР 2 ЭР 1	
12		Практические занятия Продолжение	6	8	ТК3	5			ЭР 2 ЭР 1	
13		Практические занятия Подбор сырья и оборудования для получения нанопорошков, наночастиц и квантовых точек в зависимости от выбранных технологий синтеза	6	8	ТК3	5			ЭР 2 ЭР 1	
14	РД5 РД6	Практические занятия Подбор критериев для сравнения технологий получения нанопорошков, наночастиц и квантовых точек в зависимости от требований к готовой продукции	6	8					ЭР 2 ЭР 1	
15		Практические занятия. Технологии получения нанопорощков в зависимости от требований к готовой продукции	6	8	ТК2	15		OCH 1	ЭР 2 ЭР 1	
16		Практические занятия. Продолжение	6	8					ЭР 2	
17		Практические занятия. Продолжение	6	8	ТК4	15			ЭР 2	
18	РД8	Конференц-неделя 2 (индивидуальный проект) Защита	6		ТК1	30			ЭР 2	
		Всего по контрольной точке (аттестации) 2	48	60		80				
		Экзамен				20			ЭР 2	
		Общий объем работы по дисциплине				100				

Информационное обеспечение:

№	Основная учебная литература (ОСН)	№	Название	Адрес ресурса
(код)		(код)	электронного ресурса (ЭР)	
OCH 1	Порошки для изготовления керамики : учебное пособие [Электронный ресурс] / Г. В. Лямина [и др.]; Национальный исследовательский Томский политехнический университет (ТПУ). — 1 компьютерный файл (pdf; 3.3 МВ). — Томск: Изд-во ТПУ, 2014. — Заглавие с титульного экрана. — Электронная версия печатной публикации. — Доступ из корпоративной сети ТПУ. — Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/m103.pdf	ЭР 1	База научных публикаций	http://www.sciencedire ct.com/science/journals
OCH 2	Пряхин, Е. И Наноматериалы и нанотехнологии: учебник для вузов [Электронный ресурс] / Пряхин Е. И., Вологжанина С. А., Петкова А. П., Ганзуленко О. Ю — Санкт-Петербург: Лань, 2020. — 372 с — Книга из коллекции Лань - Инженерно-технические науки Схема доступа: https://e.lanbook.com/book/149303 (контент)	ЭР 2	Г.В. Лямина Технологии нульмерных нанообъектов. Электронный курс. Доступ из корпоративной сети ТПУ:	https://stud.lms.tpu.ru /course/view.php?id= 3713
№ (код)	Дополнительная учебная литература (ДОП)	№ (код)	Видеоресурсы (ВР)	Адрес ресурса
ДОП 1 ДОП 2	Сергеев, Глеб Борисович. Нанохимия: учебное пособие / Г. Б. Сергеев. — 3-е изд — Москва: КДУ, 2009. — 336 с.: ил — Список литературы: с. 307-333 — Схема доступа: http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C186546 Морозов, Валентин Васильевич . Нанотехнологии в керамике монография: в 2 ч.: / В. В. Морозов, Э. И. Сысоев ; Владимирский государственный университет (ВлГУ) . — Владимир : Изд-во ВлГУ	BP 1		
	, 2010-2011 Ч. 1: Наночастицы . — 2010. — 275 с.: ил — Библиогр.: с. 262-268 — Схема доступа: http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C222776			
ДОП 3	Сергеев, Г. Б Криохимия: монография / Г. Б. Сергеев, В. А. Батюк. — Репринтное издание — Москва: КДУ Добросвет, 2016. — 296 с.: ил — Библиогр.: с. 270-289. — Предметный указатель: с. 290-295. — Схема доступа: http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C338715			
ДОП 4	Помогайло, Анатолий Дмитриевич. Металлополимерные гибридные нанокомпозиты / А. Д. Помогайло, Г. И. Джардималиева; Российская академия наук (РАН), Институт проблем химической физики (ИПХФ). — Москва: Наука, 2015. — 494 с.: ил — Библиогр. в конце гл. — Предметный указатель: с. 480-490 — Схема доступа: http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbo ok%5C341489			