МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ И. с. директора ИШПР Гусева Н.В. «3/» 08 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

	Teor	рия поля	
Направление подготовки/	21.05.03Технология геологической разведки		
специальность			
Образовательная программа	Геофизические методы исследования скважин		
(направленность (профиль))			
Специализация	Геофизические методы исследования скважин		
Уровень образования	высшее образование - специалитет		
-			
Курс	4	семестр	7
Трудоемкость в кредитах	. 4		4
(зачетных единицах)			
Виды учебной деятельности	Временной ресурс		
	Лекции		16
Контактная (аудиторная)	Практические занятия		ия 16
работа, ч	Лабораторные занятия		ия 16
1	ВСЕГО		48
Самостоятельная работа, в ч.		96	
		ОТОТИ	

Вид промежуточной аттестации	Зачет	Обеспечивающее подразделение	ОГ
Заведующий кафедрой - руководитель ОГ на правах кафедры	- A	The second	Гусева Н.В.
Руководитель ООП	19	Maca	Ростовцев В.В
Преподаватель			Колмаков Ю.В.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 6. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код компетен			Составляющие результатов освоения (дескрипторы компетенций)		
ции	паименование компетенции	Код	Наименование		
ПСК(У)-2.1	ПСК(У)-2.1 способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико- математический аппарат	ПСК(У)-2.1.В1	Навыками расчета характеристик векторных полей (поток, циркуляция вектора) по их аналитическим выражениям		
		ПСК(У)-2.1.У1	Решать задачи векторной и тензорной алгебры; рассчитывать дифференциальные характеристики скалярного и векторного поля (градиент, дивергенция, ротор) по его аналитическим выражениям		
		ПСК(У)-2.1.31	Определения и различия постоянного и переменного, скалярного и векторного поля		
		ПСК(У)-2.1.В2	Навыками решения задач с использованием теорем, формул и законов теории поля		
		ПСК(У)-2.1.У2	Исследовать векторное поле по его дивергенции и ротору, оценивать поле по условию потенциальности		
	ПСК(У)-2.1.32	Производные и интегральные характеристики поля; основные теоремы, формулы и задачи теории поля (Остроградского-Гаусса, Стокса, Грина, Дирихле, Неймана, Пуассона)			

2. Место дисциплины в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Наименование	Я	
Уметь задавать поля посредством различных систем координат,	ПСК(У)-2.1	
решать задачи векторной и тензорной алгебры в различных системах		
координат		
Знать основные понятия поля, уметь находить интегральные и	ПСК(У)-2.1	
дифференциальные характеристики поля по его аналитическому		
выражению, определять потенциальные, ламелларные и вихревые		
поля.		
Решать прямые задачи по расчету потенциалов и сил от точечного,	ПСК(У)-2.1	
поверхностного, объемного источника, диполя и двойного слоя.		
Понимать смысл уравнений Максвелла применительно к	ПСК(У)-2.1	
распространению электромагнитных волн в вакууме и веществе,		
дифференциальных уравнений равновесия, закона Гука и волновых		
уравнений для продольных и поперечных упругих деформаций		
	Наименование Уметь задавать поля посредством различных систем координат, решать задачи векторной и тензорной алгебры в различных системах координат Знать основные понятия поля, уметь находить интегральные и дифференциальные характеристики поля по его аналитическому выражению, определять потенциальные, ламелларные и вихревые поля. Решать прямые задачи по расчету потенциалов и сил от точечного, поверхностного, объемного источника, диполя и двойного слоя. Понимать смысл уравнений Максвелла применительно к распространению электромагнитных волн в вакууме и веществе, дифференциальных уравнений равновесия, закона Гука и волновых	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1. Поле:	РД-1	Лекции	8
основные определения, способы	РД-2	Практические занятия	8
задания и элементы		Лабораторные занятия	10
математического анализа физических полей		Самостоятельная работа	52
Раздел (модуль) 2. Физические	РД-3	Лекции	8
поля	РД-4	Практические занятия	8
		Лабораторные занятия	6
		Самостоятельная работа	44

Содержание разделов дисциплины:

Раздел 1. Поле: основные определения, способы задания и элементы математического анализа физических полей

Элементы векторной алгебры. Линейные комбинации векторов. Базис. Скалярное и векторное произведение векторов. Применение базиса для определения скалярного и векторного произведения.

Задание полей посредством различных координатных систем. Обобщенная криволинейная система координат: смысл ее введения; связь между декартовой и криволинейной системами координат; линейный элемент дуги; коэффициенты Ламе. Цилиндрическая и сферическая системы координат.

Основные определения поля и элементы математического анализа. Скалярные и векторные поля. Пространственные производные полей: производная по направлению и градиент скалярного поля; дивергенция и ротор векторного поля. Интегральные характеристики полей: поток и циркуляция векторного поля. Теоремы Остроградского-Гаусса и Стокса. Вторые производные поля. Условие потенциальности поля. Уравнения Лапласа и Пуассона. Определение соленоидальности и завихрения поля по его аналитическому выражению.

Темы лекций:

- 1. Элементы векторной алгебры.
- 2. Задание полей посредством различных координатных систем.
- 3. Основные определения поля и элементы математического анализа.

Темы практических занятий:

- 1. Коэффициенты Ламе, переход из одной системы координат в другую.
- 2. Определение вторых производных полей.
- 3. Определение потенциальности поля. Уравнения Лапласа и Пуассона.
- 4. Определение соленоидальности и завихрения поля по его аналитическому выражению.

Названия лабораторных работ:

- 1. Решение задач векторной и тензорной алгебры.
- 2. Определение дифференциальных характеристик скалярных и векторных полей (градиент, дивергенция, ротор) по их аналитическим выражениям.
- 3. Определение интегральных характеристик векторных полей (поток, циркуляция вектора) по их аналитическим выражениям.

4. Решение задач с использованием интегральных теорем Остроградского-Гаусса и Стокса

Раздел 2. Физические поля

Потенциалы различной природы. Поля ньютонианских и кулоновых сил. Потенциал. Потенциалы точечного, поверхностного, объемного источника. Потенциалы нейтральной совокупности масс: диполя; двойного слоя; поляризованной массы.

Элементы теории потенциала. Фундаментальная теорема Грина. Гармонические функции и их свойства. Внутренние и внешние задачи теории потенциала: проблемы Дирихле и Неймана. Нормальный сфероид и уровенный эллипсоид вращения. Редукции силы тяжести.

Поля постоянного и переменного электрического тока. Уравнения стационарного электрического поля: законы Ома, Кирхгофа, Джоуля-Ленца. Уравнения магнитного поля постоянного электрического тока: законы Ампера и Био-Савара-Лапласса. Уравнения Максвелла. Проводники и диэлектрики. Токи проводимости и смещения. Электромагнитные волны. Перенос энергии в электромагнитном поле.

Теория упругих колебаний. Напряжения и деформации. Связь между напряжениями и деформациями, дифференциальные уравнения равновесия, закон Гука. Волновые уравнения для продольных и поперечных смещений.

Темы лекций:

- 1. Потенциалы различной природы.
- 2. Элементы теории потенциала.
- 3. Поля постоянного и переменного электрического тока.
- 4. Теория упругих колебаний.

Темы практических занятий:

- 1. Аналитическое исследование полей потенциалов и сил от точечного источника и диполя.
- 2. Решение проблемы Дирихле для сферы.
- 3. Анализ уравнений Ома, Кирхгофа, Джоуля-Ленца, Ампера и Био-Савара-Лапласса.
- 4. Анализ дифференциальных уравнений равновесия, закона Гука и волновых уравнений для продольных и поперечных упругих деформаций.

Названия лабораторных работ:

- 5. Исследование характера изменения потенциала и его производных внутри и вне источников, образующих поле.
- 6. Анализ уравнений Максвелла в вакууме и веществе.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Перевод текстов с иностранных языков;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;

- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям;

6. Учебно-методическое и информационное обеспечение дисциплины

а. Учебно-методическое обеспечение

Основная литература:

1. Гершанок, Валентин Александрович. Теория поля: учебник для бакалавров [Электронный ресурс] / В. А. Гершанок, Н. И. Дергачев; Пермский государственный национальный исследовательский университет (ПГНИУ). — Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ).. — Москва: Юрайт, 2014. — 1 Мультимедиа CD-ROM. — Бакалавр. Базовый курс. —Электронные учебники издательства "Юрайт". — Электронная копия печатного издания. — Библиогр.: с. 277-278. — Предм. указ.: с. 271-276. — Доступ из корпоративной сети ТПУ. — Системные требования: Pentium 100 MHz, 16 Mb RAM, Windows 95/98/NT/2000, CDROM, SVGA, звуковая карта, Internet Explorer 5.0 и выше.. — ISBN 978-5-9916-1579-2.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/FN/fn-25.pdf (контент)

2. Подскребко, Эльвира Николаевна. Высшая математика. Контролирующие материалы для организации самостоятельной работы студентов: учебное пособие [Электронный ресурс] / Э. Н. Подскребко, Н. Ф. Пестова, Л. А. Кан; Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики (ВМ). — 1 компьютерный файл (pdf; 4.0 МВ). — Томск: Изд-во ТПУ, 2012. — Заглавие с титульного экрана. — Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m442.pdf (контент)

3. Шипачев, Виктор Семенович. Высшая математика. Полный курс: учебник для бакалавров [Электронный ресурс] / В. С. Шипачев. — 4-е изд.. — Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). — Москва: Юрайт, 2013. — 1 Мультимедиа CD-ROM. — Бакалавр. Базовый курс. —Бакалавр. Углубленный курс. —Электронные учебники издательства Юрайт. — Электронная копия печатного издания. — Доступ из корпоративной сети ТПУ. — Системные требования: Pentium 100 MHz, 16 Mb RAM, Windows 95/98/NT/2000, CDROM, SVGA, звуковая карта, Internet Explorer 5.0 и выше.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/FN/fn-2437.pdf (контент)

Дополнительная литература:

Каринский А.Д. Теория полей, применяемых в разведочной геофизике. Статические поля. Стационарное электрическое поле

Схема доступа: http://www.geokniga.org/books/6823

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

«Физика Земли» http://elibrary.ru/title_about.asp?id=9330

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с Перечнем лицензионного программного обеспечения ТПУ):

Adobe Acrobat Reader DC; Cisco Webex Meetings; Document Foundation LibreOffice; Google Chrome; Microsoft Office 2007 Standard Russian Academic; Zoom Zoom

7. Особые требования к материально-техническому обеспечению дисциплины

N₂	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634028, Томская область, г. Томск, Ленина проспект, 2, строен.5, 415	Комплект учебной мебели на 24 посадочных мест; Компьютер - 2 шт.; Проектор - 1 шт.
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634028, Томская область, г. Томск, Ленина проспект, 2, строен.5, 416	Доска аудиторная настенная - 1 шт.;Стол лабораторный - 1 шт.;Комплект учебной мебели на 12 посадочных мест; Компьютер - 12 шт.; Проектор - 1 шт.
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634028, Томская область, г. Томск, Ленина проспект, 2, строен.5, 408	Комплект учебной мебели на 12 посадочных мест;Стол лабораторный - 1 шт.; Компьютер - 11 шт.; Проектор - 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по специальности 21.05.03 Технология геологической разведки/ специализации Геофизические методы исследования скважин (приема 2020 г., очная форма обучения).

Разработчик(и):

Должность	ФИО
Доцент ОГ	Колмаков Ю.В.

Программа одобрена на заседании отделения геологии (Протокол заседания отделения геологии № 22 от 25.08.2020).

Заведующий кафедрой-руководитель отделения геологии на правах кафедры, д.г-м.н., доцент

/Гусева Н.В./

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании отделения (протокол)