АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫДИСЦИПЛИНЫ ПРИЕМ 2018 г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

КВАНТОВЫЕ ЗАКОНЫ АТОМНОЙ ФИЗИКИ

Направление подготовки/	14.03.02 Ядерные физика и технологии			
специальность				
Образовательная программа	Ядернь	іе физика и тех	нологии	
(направленность (профиль))				
Специализация	Физика	кинетических	явлений	
Уровень образования	высшее	е образование -	бакалавриат	
Курс	3	семестр	5	
Трудоемкость в кредитах	6			
(зачетных единицах)				
Виды учебной деятельности	Временной ресурс			
		Лекции	32	
Контактная (аудиторная)	Практические занятия		я 32	
работа, ч	Лабораторные занятия		я 24	
	ВСЕГО		88	
C	Самостоятельная работа, ч			
в т.ч. отдельные виды самостоятельной работы с			с курсовой проект	
выделенной промежуточной аттестацией (курсовой				
проект, курсовая работа)			a)	
ИТОГО, ч			ч 216	

Вид промежуточной	Экзамен,	Обеспечивающее	ДТКО
аттестации	диф.зачет,	подразделение	
	КП		

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименование компетенции	Индикаторы д	остижения компетенций	Составляющие результатов освоения (дескрипторы компетенции)		
компетенции		Код индикатора	Наименование индикатора достижения	Код	Наименование	
ОПК(У)-1	Способен использовать базовые знания естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования	И.ОПК(У)-1.3	Демонстрирует понимание физических явлений и применяет	ОПК(У)-1.3В6	Владеет опытом расчета параметров оптического излучения через инверсную среду с учетом потерь энергии	
			законы механики, термодинамики, электричества и магнетизма, основ	ОПК(У)-1.3У6	Умеет правильно применять основные законы квантовой механики при решении физических задач	
			оптики, квантовой механики и атомной физики в инженерной деятельности	ОПК(У)-1.336	Знает особенности применения законов атомной физики в науке, промышленности и медицине	
	Способен осуществлять поиск, критический анализ и синтез		Анализирует задачу,	УК(У)-1.1В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера	
УК(У)-1	и синтез информации, применять системный подход для решения поставленных задач	И.УК(У)-1.1	выделяя ее базовые составляющие	УК(У)-1.1У1	Умеет решать задачи теоретического и прикладного характера	
				УК(У)-1.131	Знает законы естественных наук и математические методы теоретического характера	
ист нау инс оте	Способен использовать научно-техническую информацию, отечественный и зарубежный опыт по		Способен осуществлять поиск научно- технической информации для обработки данных,	ПК(У)-1.1В1	Владеет навыком поиска научно-технической информации по заданной теме, используя компьютерные технологии и информационные ресурсы	
ПК(У)-1	тематике исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области	И.ПК(У)-1.1	проведения исследования, используя компьютерные технологии и информационные ресурсы	ПК(У)-1.1У1	Умеет использовать информационные ресурсы для поиска актуальной научнотехнической информации	
ПК(У)-3	Готов к проведению физических экспериментов по заданной методике, составлению описания проводимых исследований и анализу полученных экспериментальных данных	И.ПК(У)-3.1	Проводит эксперименты по заданной методике, составление описания проводимых исследований и анализ	ПК(У)-3.1В3	Владеет опытом оценки достоверности результатов, полученных экспериментально данных, обрабатывать результаты экспериментов	
				ПК(У)-3.1У3	Умеет самостоятельно анализировать физические процессы, происходящие при различных способах возбуждения атомов исследуемой среды	
			результатов	ПК(У)-3.133	Знает законы периодической системы элементов, уравнение Шредингера для стационарных состояний, законов движения заряженных частиц в электрическом и	

Код компетенции	Наименование компетенции	Индикаторы достижения компетенций		Составляющие результатов освоения (дескрипторы компетенции)		
		Код индикатора	Наименование индикатора достижения	Код	Наименование	
					магнитном полях, специальной теории относительности	
				ПК(У)-3.1В4	Владеет опытом расчёта туннельного эффекта микрочастиц основываясь на положениях квантовой механики	
				ПК(У)-3.1У4	Умеет вычислять энергии переходов электрона в атоме	
				ПК(У)-3.134	Знает тонкое и сверхтонкое расщепления уровней электронов в атоме, постулаты Бора, квантование орбит электронов в атом, основные постулаты квантовой механики	

2. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине			
Код	Наименование		
РД 1	Способность анализировать линейчатые спектры излучения и поглощения атомов.	И.ОПК(У)-1.3 И.ПК(У)-3.1	
РД 2	Выполнять расчеты траекторий движения частиц в центральном поле. Понимать угол рассеяния и дифференциальное сечение в статистической теории рассеяния. Применять знания о туннельном эффекте микрочастиц, вычислять его с потенциалом прямоугольной формы и с произвольным потенциалом. Выполнять расчёты в электрической модели атома Томсона.	И.УК(У)-1.1 И.ОПК(У)-1.3. И.ПК(У)-3.1 И.ПК(У)-1.1	
РД 3	Применять знания математического аппарата для описания процессов рассеяния, теории Бора-Зоммерфельда, в расчетах релятивистской и квантовой механики.	И.УК(У)-1.1 И.ПК(У)-3.1	
РД 4	Знать устройство и принцип работы ускорителей и лазеров.	И.ОПК(У)-1.3	

3. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.		Лекции	4
Явления с проявлением	РД1	Практические занятия	4
атомистической природы вещества и	гді	Лабораторные занятия	-
первые модели атома		Самостоятельная работа	6
Раздел (модуль) 2. Законы электромагнитного излучения веществ и законы Кирхгофа	РД2	Лекции	4
		Практические занятия	4
		Лабораторные занятия	16
		Самостоятельная работа	9
Раздел (модуль) 3. Статистическая теория рассеяния	РД2	Лекции	4
		Практические занятия	4
	·	Лабораторные занятия	-

		Самостоятельная работа	12
Раздел (модуль) 4.		Лекции	4
Полуквантовая теория Бора для атома	рп2	Практические занятия	4
водорода и формализм Бора –	РД3	Лабораторные занятия	-
Зоммерфельда		Самостоятельная работа	12
Раздел (модуль) 5.		Лекции	4
Релятивистская механика. Связь	рπ2	Практические занятия	4
массы и энергии (формула	РД3	Лабораторные занятия	-
Эйнштейна)		Самостоятельная работа	11
Раздел (модуль) 6. Ускорители заряженных частиц и		Лекции	4
	РД4	Практические занятия	4
		Лабораторные занятия	4
лазеры		Самостоятельная работа	14
Popular (Marrier) 7		Лекции	8
Раздел (модуль) 7. Квантовая механика и ее основные постулаты и законы	РД3	Практические занятия	8
		Лабораторные занятия	4
		Самостоятельная работа	11
Курсовой проект		Самостоятельная работа	64

4. Учебно-методическое и информационное обеспечение дисциплины

4.1. Учебно-методическое обеспечение

Основная литература:

- 1. Шпольский Э. В. Атомная физика: учебник: в 2 томах / Э. В. Шпольский. 8-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 1: Введение в атомную физику 2010. 560 с. ISBN 978-5-8114-1005-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/442.
- 2. Шпольский Э. В. Атомная физика: учебник: в 2 томах / Э. В. Шпольский. 6-е изд, стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Основы квантовой механики и строение электронной оболочки атома 2010. 448 с. ISBN 978-5-8114-1006-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/443.
- 3. Кузнецов С. И. Курс физики с примерами решения задач: учебное пособие / С. И. Кузнецов. 4-е изд., перераб. и доп. Санкт-Петербург: Лань, [б. г.]. Часть III: Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц 2014. 336 с. ISBN 978-5-8114-1719-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/53685.

Дополнительная литература:

- 1. Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Москва: Советская энциклопедия, 1983.— 928 с.
- 2. Пономарёв Л.И. Под знаком кванта. М.: Физматлит. 2007. 415с.
- 3. Маленькая энциклопедия «Физика микромира». Под ред. Д.В. Ширкова. М.: Советская энциклопедия. 1980. 527с.

6.2. Информационное и программное обеспечение

- 1. Электронно-библиотечная система «Лань» https://e.lanbook.com/.
- 2. Электронно-библиотечная система «Юрайт» https://urait.ru/.
- 3. Государственная корпорация по атомной энергии «Росатом» http://www.rosatom.ru/

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

7-Zip; Adobe Acrobat Reader DC; Adobe Flash Player; Amazon Corretto JRE 8; Cisco Webex Meetings; Design Science MathType 6.9 Lite; Far Manager; Google Chrome; Notepad++; WinDjView; Zoom Zoom; AkelPad; Document Foundation LibreOffice; Microsoft Office 2007 Standard Russian Academic; Mozilla Firefox ESR; Tracker Software PDF-XChange Viewer; ABBYY FineReader 12 Corporate; MathWorks MATLAB Full Suite R2017b; Mozilla Thunderbird; PSF Python 2.7; PSF Python 3; PTC Mathcad Prime 6 Academic Floating.