МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Директор обеспечивающей Школы иеразрушающего контроля и безопасности
Д.А. Седнев
2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2017 г. ФОРМА ОБУЧЕНИЯ очная

Компоненты микросистемной техники Направление подготовки/ 11.03.04 Электроника и наноэлектроника специальность Образовательная программа Электроника и наноэлектроника (направленность (профиль)) Специализация Прикладная электронная инженерия Уровень образования высшее образование - бакалавриат Курс семестр Трудоемкость в кредитах 4 (зачетных единицах) Виды учебной деятельности Временной ресурс 32 Лекции Практические занятия Контактная (аудиторная) 16 Лабораторные занятия работа, ч 16 ВСЕГО 64 Самостоятельная работа, ч 80 ИТОГО, ч 144

Вид промежуточной аттестации	экзамен	Обеспечивающее подразделение	Отделение Электронной инженерии	
Зав. кафедрой-руководитель				
отделения на правах кафедры	Auce 1		П.Ф. Баранов	
Руководитель ООП	Morri		В.С. Иванова	
Преподаватель	1	ren(-)	Т.Г. Нестеренко	

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 6. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код компетен	Наименование компетенции	Результаты освоения ООП	Составляющие результатов освоения (дескрипторы компетенций)	
ции			Код	Наименование
ПК(У)-1	Способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования	P2	ПК(У)-1.В4	Владеет опытом моделирования микромех анических систем
ПК(У)-5	Готовность выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования	P13	ПК(У)-5.38	Знает физические принципы построения компонентов микросистемной техники
ПК(У)-6	Способность разрабатывать проектную и техническую доку ментацию, оформлять законченные проектно-конструкторские работы		ПК(У)-6.У2	Умеет формулировать технические требования к блокам микромеханических систем

2. Место дисциплины в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Компетенция		
Код	Код Наименование		
РД-1	Уметь оценивать точность микроэлектромеханических сенсоров	ПК(У)-5	
РД-2	Уметь составлять математические модели компонентов микросистемной техники	ПК(У)-1	
РД -3	Владеть методами анализа и синтеза микроэлектромеханических сенсоров	ПК(У)-6	

Оценочные мероприятия текущего контроля и промежугочной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел 1. История возникновения и	РД-1	Лекции	6
развития элементной базы		Практические занятия	4
микросистемной техники.		Лабораторные занятия	2
микроспетемной телники.		Самостоятельная работа	10
Раздел 2. Сенсорные компоненты	РД-1; РД-2;	Лекции	16

микросистемной техники.	РД-3	Практические занятия	6
		Лабораторные занятия	12
		Самостоятельная работа	40
Раздел 3. Микромеханические	РД-1; РД-2	Лекции	4
приводы движения		Практические занятия	4
		Лабораторные занятия	0
		Самостоятельная работа	20
Раздел 4. Микромеханические	РД-1; РД-3	Лекции	6
радиотехнические и		Практические занятия	2
•		Лабораторные занятия	2
оптоэлектромеханические		Самостоятельная работа	10
компоненты.			

Содержание разделов дисциплины:

Раздел 1. История возникновения и развития элементной базы микросистемной техники.

История возникновения и развития элементной базы микросистемной техники. Классификация компонентов микросистемной техники по функциональному назначению и принципу действия.

Темы лекций:

- 1. Классификация компонентов микросистемной техники по функциональному назначению и принципу действия.
- 2. Базовые конструкции и обобщенное описание компонентов микросистемной техники.
 - 3. Параметры и характеристики микросистем.

Темы практических занятий:

- 1. Области применения микросистем.
- 2. Названия лабораторных работ:
- 3. Исследование динамических характеристик МЭМС акселерометра

Раздел 2. Сенсорные компоненты микросистемной техники

Классификация, характеристики сенсоров. Микромеханические сенсоры. Механические конструкции: объемные, мембранные, балочные, струнные. Виды преобразователей: пьезоэлектрические, тензорезистивные, емкостные. Датчики на основе микромеханических преобразователей: давления, расхода, пульсаций, смещения, силы, ускорения, крена, микрогироскопы, микрофоны.

Темы лекций:

- 1. Микроэлектромеханические осевые акселерометры.
- 2. Микроэлектромеханические маятниковые акселерометры.
- 3. Микроэлектромеханические струнные акселерометры.
- 4. Двух- и трёхосевые микроэлектромеханические акселерометры.
- 5. Микроэлектромеханические гироскопы LL-типа.
- 6. Микроэлектромеханические гироскопы RR-типа.
- 7. Микроэлектромеханические датчики давления.

Темы практических занятий:

- 1. Расчет базовой конструкции тензорезистивного преобразователя.
- 2. Расчет базовой конструкции емкостного преобразователя.
- 3. Расчёт параметров микромеханического гироскопа

Названия лабораторных работ:

1. Исследование динамических характеристик МЭМС гироскопа LL -типа.

- 2. Исследование динамических характеристик МЭМС гироскопа RR –типа.
- 3. Исследование динамических характеристик МЭМС гироскопа LL-типа с расширенной полосой пропускания.

Раздел 3. Микромеханические приводы движения

Микромеханические приводы движения: пьезоэлектрические, емкостные, термомеханические, электромагнитные, пневматические актюаторы. Устройства микросмещения, микропозиционирования, микрозахвата. Микро- и наноманипуляторы.

Темы лекций:

- 1. Пьезоэлектрические, емкостные, термомеханические, электромагнитные, пневматические актюаторы.
- 2. Устройства микросмещения, микропозиционирования, микрозахвата.

Темы практических занятий:

- 1. Сравнительный анализ пьезоэлектрического и емкостного микроприводов.
- 2. Расчёт емкостного микропривода.

Раздел 4. Микромеханические радиотехнические и оптоэлектромеханические компоненты

Управляемые микроэлектрорадиокомпоненты: резисторы, конденсаторы, катушки индуктивности, микроантенны; микроэлектромеханические и микропневматические реле и коммутаторы.

Управляемые оптоэлектромеханические микрокомпоненты: резонаторы, зеркала, линзы, затворы, фильтры; оптопереключатели.

Темы лекций:

- 1. Управляемые микроэлектрорадиотехнические компоненты.
- 2. Управляемые оптоэлектромеханические микрокомпоненты

Темы практических занятий:

1. Расчёт конденсатора, управляемого напряжением

Названия лабораторных работ:

1. Исследование МЭМС конденсатора, управляемого напряжением.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение индивидуальных заданий и контролирующих мероприятий и др.);
 - Изучение тем, вынесенных на самостоятельную проработку;
 - Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
 - Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-метолическое обеспечение

Основная литература

1. Игнатов, А. Н.. Микросхемотехника и наноэлектроника [Электронный ресурс] / Игнатов А. Н.. — Санкт-Петербург: Лань, 2011. — 528 с.. Лань - Инженерно-технические науки..

- ISBN 978-5-8114-1161-0.
- (https://e.lanbook.com/books/element.php?pl1_cid=25&pl1 id=2035 (контент).
- 2 Вавилов, В. Д.. Микросистемные датчики физических величин: в двух частях [Электронный ресурс] / Вавилов В. Д., Тимошенков С. П., Тимошенков А. С.. Москва: Техносфера, 2018. 550 с.. Книга из коллекции Техносфера Инженерно-технические науки.. ISBN 978-5-94836-498-8. Схема доступа: https://e.lanbook.com/book/110960

Дополнительная литература

- 1. Распопов, Владимир Яковлевич. Микромеханические приборы : учебное пособие / В. Я. Распопов. Москва: Машиностроение, 2007. 400 с.: ил.. Для вузов. Библиогр.: с. 394-396. Предметный указатель: с. 397-399.. ISBN 5-217-03360-6.
- 2. Нанотехнологии. Наноматериалы. Наносистемная техника. Мировые достижения 2008 год : [сборник] / под ред. П. П. Мальцева. Москва: Техносфера, 2008. 432 с.: ил.. Мир материалов и технологий. Приложение: с. 415-430.. ISBN 978-5-94836-180-2.
- 3. Нано- и микросистемная техника. От исследований к разработкам : сборник статей / под ред. П. П. Мальцева. Москва: Техносфера, 2005. 592 с.: ил.. Мир электроники. Библиография в конце статей.. ISBN 5-94836-063-6.
- 4. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: учебное пособие для вузов: в 2 ч. / под ред. Ю. А. Чаплыгина. М.: БИНОМ. Лаборатория знаний, 2009. Ч. 2: Элементы и маршругы изготовления кремниевых ИС и методы их математического моделирования. 2009. 423 с.: ISBN 978-5-94774-585-6.
- 5. Резнев, А. А.. Тенденции развития МЭМС / А. А. Резнев, В. Д. Вернер. Москва: Амиант, 2010. 275 с.: ил.. Библиогр.: с. 268-272. с. 264-267.. ISBN 978-5-4231-0042-1..
- 6. Процессы плазменного травления в микро- и нанотехнологиях: учебное пособие / В.А. Галперин, Е.В. Данилкин, А.И. Мочалов; под ред. С.П. Тимошенкова. -М.: БИНОМ, 2010.-283 с.

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. LMS Moodle "Гироскопы и акселерометры на новых физических принципах" $\underline{http://stud.lms.tpu.ru/course/view.php?id=154}$
- 2. Yole Development [Электронный ресурс]. URL: http://www.yole.fr.
- 3. mCube [Электронный ресурс]. URL: http://www.mcubemems.com.
- 4. AnalogDevices [Электронный ресурс]. URL: http://www.analog.com.
- 5. STMicroelectronics [Электронный ресурс]. URL: http://www.st.com.
- 6. Colibrys [Электронный ресурс]. URL: http://www.colibrys.com.
- 7. Bosh Sensortec [Электронный ресурс]. URL: http://www.bosch-sensortec.com.
- 8. Sensor Technology LTD [Электронный ресурс]. URL: http://www.sensortech.ca/site/index.cfm.
- 9. Silicon Sensing Systems [Электронный ресурс]. URL: http://www.siliconsensing.com.
- 10. Murata Electronics [Электронный ресурс]. URL: http://www.murata.com.
- 11. InvenSense [Электронный ресурс]. URL: http://www.invensense.com.
- 12. MEMSIC [Электронный ресурс]. URL: http://www.memsic.com.
- 13. ОАО КОНЦЕРН ЦНИИ «ЭЛЕКТРОПРИБОР» [Электронный ресурс]. URL: http://www.elektropribor.spb.ru.
- 14. ОАО «ГИРООПТИКА» [Электронный ресурс]. URL: http://www.gyro.ru.

15. Информационно-справочные системы и профессиональные базы данных HTБ https://www.lib.tpu.ru/html/irs-and-pdb

Используемое лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

- 1. Cisco Webex Meetings;
- 2. Document Foundation LibreOffice;
- 3. Google Chrome;
- 4. MathWorks MATLAB Full Suite R2017b;
- 5. Microsoft Office 2007 Standard Russian Academic;
- 6. Mozilla Firefox ESR;
- 7. Zoom Zoom;
- 8. Microsoft Office 2016 Standard Russian Academic;

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего конгроля и промежуточной аттестации (компьютерный класс) 634034, Томская область, г. Томск, Ленина проспект, 30а, 105	Проектор - 1 шт.; Компьютер - 18 шт. Комплект учебной мебели на 15 посадочных мест.
2.	Аудитория для проведения учебных занятий всех типов. 634034 г. Томская область, Томск, пр. Ленина 30а, учебный корпус № 4, аудитория 210	Комплект учебной мебели на 52 посадочных мест; Проектор - 1 шт.; Компьютер - 20 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 11.03.04 Электроника и наноэлектроника, специализации «Прикладная электронная инженерия» (приема 2017 г., очная форма обучения).

Разработчик(и):

Должность	ФИО
Доцент ОЭИ ИШНКБ	Нестеренко Т.Г.

Программа одобрена на заседании выпускающей кафедры точного приборостроения (протокол от «29» июня 2017 г. № 40).

Зав. кафедрой – руководитель отделения на правах кафедры, к.т.н.

П.Ф. Баранов

подпись

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании ОЭИ ИШНКБ (протокол)
2018/2019 учебный год	 Обновлено программное обеспечение Обновлен состав профессиональных баз данных и информационно-справочных систем Обновлено содержание разделов дисциплины Обновлен список литературы, в том числе ссылок ЭБС Изменена система оценивания 	От 29.08.2018 г. № 8
2019/2020 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание разделов дисциплины 4. Обновлен список литературы, в том числе ссылок ЭБС	От 28.06.2019 г. № 19
2020/2021 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание раздела 4 «Микромеханические радиотехнические и оптоэлектромеханические компоненты» 4. Обновлен список литературы, в том числе ссылок ЭБС	От 01.09.2020 г. № 37