ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2019 г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

	Гидрогазодинамика				
Направление подготовки/			1	4.03.02 - Ядерные физика и технологии	
Образовательная программа (направленность (профиль))	Ядернь	ве физика и тех	нологии		
Специализация					
Уровень образования	высшее образование - бакалавриат				
Курс	3	семестр		5	
Трудоемкость в кредитах (зачетных единицах)				4	
,					
Заведующий кафедрой - руководитель отделения на		AT		А.Г. Горюнов	
правах кафедры		741	15	П.Н. Бычков	
Руководитель ООП Преподаватель			-	Д.Г. Видяев	

1. Роль дисциплины «Гидрогазодинамика» в формировании компетенций выпускника:

Элемент образова-		I/oz	Наименование	Индикатор	ы достижения компетенций	Со	ставляющие результатов освоения (дескрипторы компетенций)
тельной программы (дисциплина)	Семестр	Код компетенции	компетенции	Код индикатора	Наименование индикатора до- стижения	Код	Наименование
						ОПК(У)-1.7В1	Владеет навыками работы с измерительными приборами, лабораторным исследовательским оборудованием
						ОПК(У)-1.7В2	Владеет навыками моделирования гидродинамических и теплофизических процессов
					Демонстрирует понимание и владение основными зако-	ОПК(У)-1.731	Знает основные законы гидродинамики, переноса теплоты и вещества
Гидрогазо- динамика 5		ОПК(У)-1	Способен использовать базовые знания естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования	И.ОПК(У)-1.7	нами гидродинамики, переноса теплоты и массы, диф-	ОПК(У)-1.7У1	Умеет использовать аппарат математического анализа и основные законы гидродинамики и теплообмена для расчета теплофизических процессов
						ОПК(У)-1.7У2	Умеет применять расчётные методы для мо- делирования гидродинамических и теплофи- зических процессов
						ОПК(У)-1.731	Знает основные законы гидродинамики, переноса теплоты и вещества
	5					ОПК(У)-1.732	Знает основные теоретические и расчетные методы исследования гидродинамических и теплофизических процессов
					Демонстрирует понимание и анализ явлений, вызванных	ОПК(У)-1.9В1	Владеет опытом решения практических задач гидрогазодинамики, планирования и проведения исследований параметров течения жидкости и газа, оценки точности и погрешности измерений, анализа полученных результатов
					И.ОПК(У)-1.9	И.ОПК(У)-1.9 ст чо к	взаимодействием жидкости и газа с инженерными кон-
			задач	ОПК(У)-1.931	Знает основные понятия и законы механики жидкости и газа, основные типы потерь напора, виды трубопроводов и методику их расчета.		

Элемент образова-		Код	Наименование	Индикатор	ъ достижения компетенций	Составляющие результатов освоения (дескрипторы компетенций)		
тельной программы (дисциплина)	Семестр	компетенции	компетенции	Код индикатора	Наименование индикатора до- стижения	Код	Наименование	
		ПК(У)-2	Способен проводить математическое моделирование процессов и объектов атомной отрасли с использованием стан-	И.ПК(У)-2.1	Анализирует процессы динамики жидкости и газа, протекающие в установках различного назначения с помощью методов компьютерной модели	ПК(У)-2.1В1	Владеет опытом использования современных информационных технологий и прикладных программ для сбора и анализа информационных данных при решении задач по динамике жидкости и газа Умеет применять информационно-коммуни-	
			дартных методов проектирования и анализа			ПК(У)-2.131	кационные технологии и программное обеспечение для комплексного сбора и обработки информации при разработке и исследование гидрогазодинамических конструкций Знает основные способы хранения, получения информации и стандартные программные продукты, применяемые при исследовании гидрогазодинамических процессов	

2. Показатели и методы оценивания

Ι	Іланируемые результаты обучения по дисциплине	Код индикатора		
Код	Наименование	достижения кон- тролируемой ком- петенции (или ее части)	Наименование раздела дисци- плины	Методы оценивания (оценочные мероприятия)
РД 1	Способность применять знание теоретических основ динамики жидкости и газа в теоретических и экспериментальных исследованиях объектов атомной отрасли	И.ОПК(У)-1.9 И.ОПК(У)-1.7	Раздел 1. Теоретические основы динамики жидкости и газа. Раздел 2. Расчет гидравлических потерь напора.	Защита лабораторной работы, коллоквиум, контрольная работа, тестирование, выполнение ИДЗ
РД 2	Способность использовать методы экспериментального определения, обработки и анализа данных при теоретических и экспериментальных исследованиях гидродинамических конструкциями	И.ОПК(У)-1.9 И.ПК(У)-2.1	Раздел 2. Расчет гидравлических потерь напора. Раздел 3. Организация потоков жидкости и газа в гидравлических системах.	Защита лабораторной работы, контрольная работа, реферат, выполнение ИДЗ

			Раздел 2. Расчет гидравли-	
	Способность проводить моделирование гидроди-		ческих потерь напора.	Защита лабораторной работы,
РД 3	намических процессов и объектов атомной отрасли с использованием стандартных методов и компьютерных продуктов	И.ПК(У)-2.1	Раздел 3. Организация потоков жидкости и газа в	коллоквиум, контрольная работа, выполнение ИДЗ
			гидравлических системах.	

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом — «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения за- дания	Соответствие традици- онной оценке	Определение оценки			
90%÷100%	«Отлично»	тличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходи-			
		мые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному			
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов			
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов			
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям			

Шкала для оценочных мероприятий зачёта

% выполнения заданий	Балл	Соответствие традици- онной оценке	Определение оценки
90%÷100%	18 ÷ 20		Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	-	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов

55% - 69%	11 ÷ 13	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

Оценочные мероприятия	Примеры типовых контрольных заданий
1. Тестирование	Тест.
	На выбор единственного ответа
	1. Формула Дарси – Вейсбаха имеет вид:
	$a) h_{\rm Tp} = \lambda \frac{l}{d} \cdot \frac{u^2}{2g}, \delta) h_{\rm M} = \xi \frac{u_2^2}{2g}, \delta) h_{\rm Tp} = \frac{\Delta p_{\rm Tp}}{\gamma} = \frac{u^2 l}{g d} \varphi(\frac{u d \rho}{\mu}; \frac{K}{d})$
	2. степень сужения конфузора зависит от угла сходимости?
	$a)$ да, δ) нет.
	3. При каком значении величины угла поворота коэффициент сопротивления дросселя будет максимальным?
	a) $90, \delta) 60, \epsilon)45, \epsilon)30, \delta) 0.$
	4. С увеличением диаметра трубы влияние стыков на сопротивление
	а) уменьшается,
	б) увеличивается.
	5. В области перехода течения от ламинарного к турбулентному, т.е. в диапазоне чисел
	Рейнольдса от 2320 до 10 ⁴ , можно использовать аппроксимационную формулу Гинзбурга
	6. Условие применения формулы Шифринсона: $Re > 500/(K/d)$, ! $Re < 27/(K/d)^{1,143}$, ! $10^4 < Re$
	7. Какая формула описывает режим течения жидкости, называемый течением в гидравлически
	гладкой трубе?
	$a)$ Блазиуса, δ) Гинзбурга, ϵ) Альтшуля.
	На выбор множественного ответа
	8. Диффузор характеризуется двумя параметрами:
	$a)$ углом конусности, δ) степенью расширения, ϵ) коэффициентом замедления
	9. К арматуре трубопровода относятся:
	$a)$ задвижка, δ) дроссель, ϵ) крестовина, ϵ) фланец.

	Оценочные мероприятия	Примеры типовых контрольных заданий
		10. В задачах механики жидкости имеется три первичных размерности
		$a)$ масса, δ) время, ϵ) длина, ϵ) температура, δ) плотность
		На установление правильной последовательности
		11. Тройником называется деталь трубопровода, в которой происходит слияние или разделение
		потока. Тройники делятся на, когда жидкость из магистрали течет в ответвление, и, когда
		жидкость поступает из ответвления в магистраль.
		$a)$ приточные, δ) вытяжные
		Вопрос открытого типа
		12. Как называется напор, необходимый для преодоления сил сопротивления при движении жид-
	n	кости по трубопроводу?
2.	Защита лабораторной работы	Ответить на вопросы:
		1. Определения коэффициентов динамической и кинематической вязкости, их единицы измерения
		и связь между ними.
		2. Устройство и принцип работы электродинамического вибрационного вискозиметра.
		3. Назначение, устройство и принцип работы вискозиметра ВПЖ-1.
		4. Порядок подготовки к работе вискозиметра ВПЖ-1.
2	ипо	5. Механизм определения вязкости жидкости с помощью вискозиметра ВПЖ-1
3.	идз	Вариант №1
		Задача 1. Давление в газовом резервуаре составляет 0,15 МПа, температура +17°C. На сколько
		повысится давление в этом резервуаре, если температура в нем возрастает на 10°С?
		Задача 2. Определить массу 110 тыс. нормальных (т.е. давление атмосферное, $t = 20$ °C) кубомет-
		ров газа, если его молярная масса $\mu = 18,2$ кг/кмоль.
		Задача 3. Средняя по сечению скорость u течения вязкой жидкости ($\rho = 890 \text{ кг/м}^3$) в трубопро-
		воде с внешним диаметром $D=1000$ мм и толщиной стенки $\delta=10$ мм, равна 1,0 м/с. Определить
		массовый расход трубопровода за год.
		Примечание: Число рабочих дней принять равным 350.
		Задача 4. При стационарной перекачки газа давление и температура в начале участка газопровода
		составляет 4,2 МПа и 35°C, а в его конце 4,5 МПа и 10°C, соответственно. Определить, пренебрегая
		сжимаемостью газа, во сколько раз скорость газа в конце участка превышает скорость газа в его
		начале.

	Оценочные мероприятия	Примеры типовых контрольных заданий
		Задача 5. Трубопровод состоит из двух последовательно соединенных участков: первого – с внеш-
		ним диаметром $D_1 = 500$ мм и толщиной стенки $\delta = 8$ мм, и второго с диаметром $D_2 = 370$ мм и
		толщиной стенки $\delta = 6$ мм. Скорость стационарного течения несжимаемой жидкости в первом
		участке составляет 1,3 м/с. Какова скорость течения жидкости во втором?
		Примечание: Потерями на стыке участков пренебречь.
4.	Реферат	Тематика рефератов посвящена средствам измерения равновесных и скоростных парамет-
		ров жидкости:
		1. Разновидности измерителей уровня жидкости
		2. Электронные приборы для измерения уровня жидкости
		3. Прибор с упругими элементами для измерения давления
		4. Приборы для измерения скоростного напора
		5. Электрические приборы для измерения скорости потока жидкости
		6. Расходомер электронного типа
		7. Манометр для измерения низкого давления
		8. Манометры для измерения высокого давления
		9. Приборы для измерения низкого вакуума
5.	Коллоквиум	Вариант №1
		1. Сформулируйте понятие линии тока. Приведите ее свойства и уравнение.
		2. Приведите системы дифференциальных уравнений движения идеальной. Раскройте физиче-
		ский смысл членов этих уравнений.
		3. Раскройте энергетический смысл величин, входящих в трехчлен Бернулли.
		4. Опишите устройство и принцип работы сопла Лаваля. Где оно применяется?
6.	Контрольная работа	Вариант №1
		Задача 1. Определить массу 90 тыс. нормальных (т.е. давление атмосферное, $t = 20$ °C) кубометров
		газа, если его молярная масса $\mu = 19,5$ кг/кмоль.
		Задача 2. В U-образной трубке находится ртуть. Насколько повысится уровень ртути в одном ко-
		лене, если в другое налить столб воды высотой Н = 270 мм?
		Задача 3. При стационарной перекачки газа давление и температура в начале участка газопровода
		составляет 5,2 МПа и 35°C, а в его конце 3,5 МПа и 10°C, соответственно. Определить, пренебрегая
		сжимаемостью газа, во сколько раз скорость газа в конце участка превышает скорость газа в его
		начале.
		Задача 4. Чему равен гидравлический уклон на участке трубопровода ($D = 377$ мм, $\delta = 8$ мм, $K = 100$
		$0,15$ мм), транспортирующего жидкость ($\nu = 5$ сСт.) с расходом 250 м ³ /ч?

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Тестирование	Тестирование проходит в электронном курсе: http://design.lms.tpu.ru/ course/info.php?id=25
2.	Лабораторная работа	Отчет по лабораторной работе сдается в электронном курсе: http://design.lms.tpu.ru/
		course/info.php?id=25, защищается на лабораторных занятиях.
3.	ИДЗ	Задание сдается в электронном курсе: http://design.lms.tpu.ru/ course/info.php?id=25, содержит 5 за-
		дач и каждая решенная задача оценивается в 2 балла.
4.	Реферат	Реферат сдается в электронном курсе.
5.	Контрольная работа	Контрольная работа содержит 4 задач и каждая решенная задача оценивается в 2,5 балла.
6.	Коллоквиум	Каждый вариант содержит 4 вопроса и каждый правильный ответ оценивается в 2,5 балла.