ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2017 г.

ФОРМА ОБУЧЕНИЯ очная

Математика 3.1 Направление подготовки/ 12.03.01 Приборостроение специальность Образовательная программа Приборостроение (направленность (профиль)) Специализация Приборы и методы контроля качества и диагностики Уровень образования высшее образование - бакалавриат Kypc 2 3 семестр Трудоемкость в кредитах (зачетных единицах) Заведующий кафедрой руководитель отделения на Трифонов А.Ю правах кафедры отделения математики и информатики Руководитель ООП Мойзес Б.Б.

Преподаватель

Арефьев В.П.

1. Роль дисциплины «Математика 3.1» в формировании компетенций выпускника:

Элемент образовательной программы (дисциплина, практика, ГИА)	Семестр	Код компетенции	Наименование компетенции	Результаты освоения ООП	Составляющие результатов освоения (дескрипторы компетенций)	
					Код	Наименование
Математика 3.1	3	ОПК(У)-1 Способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики		ОПК(У)- 1.В3	Владеет аппаратом комплексного и операционного анализа и теорией рядов для описания, анализа, теоретического и экспериментального исследования и моделирования физических и химических систем, явлений и процессов	
			естественных наук и	P2	ОПК(У)- 1.У4	Умеет применять аппарат теории числовых и функциональных рядов, инструменты комплексного и операционного анализа при решении инженерных задач
					ОПК(У)- 1.34	Знает базовые законы, понятия и методы теории рядов, комплексного и операционного анализа

2. Показатели и методы оценивания

	Планируемые результаты обучения по дисциплине		Наименование раздела дисциплины	Методы
Код	Наименование	контролируемой компетенции (или ее части)		оценивания (оценочные мероприятия)
РД 1	Владеет методами исследования сходимости рядов, разложения функций в степенные и тригонометрические ряды; методами дифференциального и интегрального исчисления функций комплексного переменного; основными приложениями теории вычетов; методами операционного исчисления решения обыкновенных дифференциальных уравнений и их систем	ОПК(У)-1	 Числовые ряды Функциональные ряды. Ряды Фурье Комплексные числа и функции Ряды в комплексной области Теория вычетов и ее приложения. Преобразование Лапласа. Операционный метод решения дифференциальных уравнений и систем 	Контрольная работа ИДЗ. Экзамен

РД 2	Умеет исследовать на сходимость числовые ряды; находить интервалы сходимости степенных рядов; разлагать функции в ряд Тейлора и Фурье; выполнять действия с комплексными числами и функциями; дифференцировать и интегрировать функции комплексного переменного; разлагать функции в ряд Лорана; применять теорию вычетов для нахождения интегралов; находить изображение по оригиналу и оригинал по изображению; решать задачу Коши для дифференциальных уравнений и систем с помощью операционного исчисления	 Числовые ряды Функциональные ряды. Ряды Фурье Комплексные числа и функции Ряды в комплексной области Теория вычетов и ее приложения. Преобразование Лапласа. Операционный метод решения дифференциальных уравнений и систем 	Контрольная работа ИДЗ. Экзамен
РД 3	Знает основные понятия теории числовых и функциональных рядов; ряды Тейлора, Маклорена, Фурье; понятия комплексных чисел, основных функций комплексного переменного и их свойства; дифференцирование и интегрирование функций комплексного переменного; понятия ряда Лорана, особых точек, вычетов; понятие преобразования Лапласа и его основные свойства; основные приложения операционного исчисления	 5. Числовые ряды 6. Функциональные ряды. Ряды Фурье 3. Комплексные числа и функции 4. Ряды в комплексной области Теория вычетов и ее приложения. 5. Преобразование Лапласа. Операционный метод решения дифференциальных уравнений и систем 	Контрольная работа ИДЗ. Экзамен

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка – максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля*

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности,

		необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена*

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	36 ÷ 40	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности
70% ÷ 89%	28 ÷ 35	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности
55% ÷ 69%	22 ÷ 27	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности
0% ÷ 54%	0 ÷ 21	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1	Контрольная работа	<u>Числовые и функциональные ряды</u>
		 Исследовать на сходимость ряды:
		$1.\sum_{n=1}^{\infty} \frac{1}{n+1-\cos^2 na}, 2.\sum_{n=1}^{\infty} \frac{(n+1)^2}{(n+2)^2 3^n}, 3.\sum_{n=1}^{\infty} \frac{n!(n+1)!}{(2n)!},$
		$4. \sum_{n=1}^{\infty} \left(\frac{n-1}{3n+2} \right)^n, 5. \sum_{n=1}^{\infty} \frac{(-1)^n n^4}{n^5 + 5}.$
		II. Найти интервал сходимости ряда, исследовать ряд на концах интервала:
		1) $\sum_{n=1}^{\infty} \frac{(0.1)^n x^{2n}}{n}$ 2) $\sum_{n=1}^{\infty} \frac{3^{2n} (n+3)^2}{(x+5)^n}$
		III. Разложить в ряд Тейлора, в окрестности точки х ₀ , функцию f(x):

Оценочные мероприятия	Примеры типовых контрольных заданий
	1) $y = \ln x$, $x_0 = 1$. 2) $y = x^2 \cdot \sin 5x$, $x_0 = 0$
	3) $y = \frac{7}{1+x-12x^2}$ $x_0 = 0$, 4) $y = \frac{1}{\sqrt[7]{x}}$ $x_0 = -1$.
	Контрольная работа №3 по теме «Функции комплексного переменного» ВАРИАНТ №1
	IV. а) Найти все значения корня: $\sqrt[3]{-2}$. Результат вычислений представить в алгебраической форме.
	б) Представить в алгебраической форме: $(-1-i)^{4i}$.
	V. a) Найти коэффициент растяжения и угол поворота в точке $z_0 = 1 - i$ при отображении $\omega = z^2$.
	б) Проверить функцию на аналитичность: $\omega = (z^*)^2 \cdot z$.
	VI. Найти аналитическую функцию $f(z) = U + iV$ по известной действительной части и значению $f(z_0)$: $U(x,y) = x^3 - 3xy^2$; $f(i) = -i$.
	VII. Вычислить интеграл: $\int z^2 {\rm Im} z dz$, где $ L$ - отрезок прямой от точки $ z_1 = 0$, до точки $ z_2 = 1 - 2i$.
	VIII. Вычислить интеграл: $\int_{L} \frac{dz}{z^{3}(z-2i)^{2}}, \text{ где } L: z-2i = 1.$
	Контрольная работа №3 по теме «Комплексные ряды. Вычеты»
	ВАРИАНТ №1

	Оценочные мероприятия	Примеры типовых контрольных заданий
		1. Разложить функцию $f(z) = \frac{z}{(z-1)(z^2+2z-3)}$ в ряд Лорана с центром в $z_0 = 1$ в кольце $ z-1 > 4$.
		2. Найти и построить область сходимости ряда: $\sum_{n=1}^{\infty} \frac{\cos(in)}{(z+i+1)^n} + \sum_{n=0}^{\infty} \frac{(z+i+1)^n}{(2n+i)(4+3i)^n}.$ 3. Вычислить следующие интегралы:
		A) $\oint_{ z-2 =4} \frac{zdz}{e^z + e^2}$ B) $\int_{ z =2} \frac{exp(1/z) + 1}{z} dz$ C) $\int_{-\infty}^{\infty} \frac{\cos \pi x dx}{x^2 + 4x + 5}$
		Контрольная работа №3 по теме «Операционное исчисление.» ВАРИАНТ №1
		1. Решить дифференциальное уравнение $x'+3x=e^{-2t}$, если $x(0)=0$. 2. С помощью формулы Дюамеля найти решение уравнения $x''= \operatorname{arctg} t$, удовлетворяющее начальным условиям $x(0)=x'(0)=0$.
		удовлетворяющее начальным условиям $x(0) = x(0) = 0$. 3. Решить систему уравнений $\begin{cases} x'+4y+2x=4t+1; \\ y'+x-y=\frac{3}{2}t^2 \end{cases} x(0) = y(0) = 0.$
2.	ИДЗ.	Пример варианта индивидуальных заданий.
		<u>Числовые и функциональные ряды</u> 1. Исследовать на сходимость знакоположительные ряды:

Оценочные мероприятия	Примеры типовых контрольных заданий
	1) $\sum_{n=1}^{\infty} \frac{(2n-1)^2}{(5n^2+1)\cdot\sqrt{n}}$ 2) $\sum_{n=1}^{\infty} tg^5 \frac{3}{\sqrt{2n+7}}$
	3) $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n}$ 4) $\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n \cdot \frac{1}{5^n}$
	2. Исследовать на сходимость знакочередующиеся ряды:
	1) $\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{2n}$ 2) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{5n^2 + 3n - 1}}{7n^3 + 4}$
	3) $\sum_{n=1}^{\infty} (-1)^n \frac{6^n (n^2 - 1)}{n!}$ 4) $\sum_{n=1}^{\infty} (-1)^n \ln^{2n} \left(1 + \frac{3}{n^2} \right)$
	3. Найти интервалы сходимости степенных рядов:
	1) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n+2}}{n+1} (x-8)^n$ 2) $\sum_{n=1}^{\infty} (-1)^n n 2^{2n} x^n$
	4. Разложить в ряд Тейлора по степеням $(x - x_0)$ функции:
	1) $y = \frac{1}{x^2 + 4x + 7}$, $x_0 = -2$ 2) $y = (1+x)e^{-2x}$, $x_0 = 0$
	3) $y = \frac{\operatorname{arct} gx^3}{5x^3}$ $x_0 = 0$, 4) $y = \ln(x+2)^3$ $x_0 = 1$.
	5. Используя разложение подынтегральной функции в степенной ряд, вычислить интегралы с точностью не менее 0,01:
	1) $\int_{0}^{1/8} \sqrt{1-x^3} dx$ 2) $\int_{0}^{1} \sin x^3 dx$

Оценочные мероприятия	Примеры типовых контрольных заданий
	Комплексные числа и функции
	1. Даны числа $z_1 = -2\sqrt{3} + 2i$, $z_2 = 2 - 6i$.
	Выполнить действия в алгебраической форме:
	1) $3z_1 + 5z_2$, 2) $z_1 \cdot z_2$, 3) $\frac{z_1}{z_2}$.
	2. Даны числа $z_1 = 3\sqrt{3} + 3i$, $z_2 = -1 + 4i$, $z_3 = 2 - 4i$.
	Построить числа на комплексной плоскости и перевести в тригонометрическую и показательную форму записи. Выполнить указанные действия в показательной форме, результаты представить в алгебраической и в показательной форме.
	1) $(z_2)^6$, 2) $\sqrt[3]{z_1}$, 3) $\frac{z_2 \cdot z_3}{z_2 + z_3}$.
	3. Даны числа $z_1 = -1 - i$, $z_2 = 2 + 3i$.
	Вычислить значения функций:
	1) $\ln z_1$, 2) e^{z_2} , 3) $\cos z_2$.
	Результаты представить в алгебраической форме. 4. Определить и построить на комплексной плоскости семейства линий, заданных уравнениями:
	1) $ z = \frac{C}{\arg z}$, 2) $ z = C \sin(\arg z)$.
	5. Найти модуль и аргумент производной функции $w = f(z)$ в точке $z = z_0$:
	$f(z) = (1+4i)e^{-4iz}, z_0 = 1+i$
	6. Вычислить интегралы:

Оценочные мероприятия	Примеры типовых контрольных заданий
	1) $\int_{(L)} \frac{dz}{\sqrt{z}}$, $z\partial e L: \{ z = \sqrt{3}, \operatorname{Re} z > 0 \};$
	2) $\int_{(L)} (\operatorname{Re} z + \operatorname{Im} z) dz$, где L : отрезок $[0,1+2i]$.
	7. Вычислить, используя интегральную формулу Коши:
	$ \oint_{(L)} \frac{z^2 - z}{z^2 (z+1)^2} dz, \text{ode } L: \begin{cases} 1 & z = 0,5; \\ 2 & z+1 = 1; \\ 3 & z = 2. \end{cases} $
	Операционный метод 1. Найти изображения следующих функций:
	1) $f(t) = \cos^4 t$. 2) $f(t) = \frac{e^{at} - e^{bt}}{t}$.
	2. Найти оригиналы функций по заданным изображениям:
	1) $F(p) = \frac{1}{(p+1)^2(p+3)}$. 2) $F(p) = \frac{p^2}{(p^2+4)(p^2+9)}$.
	3. Найти решение задачи Коши операционным методом:
	1) $2x'' + 5x' = 2\cos t$, $x(0) = 0$, $x'(0) = 0$.
	2) $x'' + 6x = t^2$, $x(0) = 0$, $x'(0) = 0$.
	3) $x'' - 4x' + 3x = 5e^{4t}$, $x(0) = 0$, $x'(0) = 0$.
	4. Решить уравнения, используя формулу Дюамеля:

	Оценочные мероприятия	Примеры типовых контрольных заданий
		$x"+16x = \begin{cases} 0, & t < 1, \\ -2, & 1 \le t \le 2, \\ 1, & 2 < t \le 3, \\ 0, & t > 3, \end{cases}$ $x(0) = 0, x'(0) = 0.$ 5. Найти решение систем операционным методом: $\begin{cases} x' = 6x + 2y & x(0) = -1, \\ 2x' = 4x - 5y & x(0) = 3, \end{cases}$
3.		1) $\begin{cases} x' = 6x + 2y & x(0) = -1, \\ y' = 2x + 9y & y(0) = 0. \end{cases}$ 2) $\begin{cases} x' = 4x - 5y & x(0) = 3, \\ y' = x + 2y & y(0) = -1. \end{cases}$
3	Экзамен	Примеры заданий на экзамен
		Экзаменационный билет 1
		Семестр 3 1. Степенные ряды. Теорема Абеля. Нахождение интервала сходимости степенного ряда. 2. Преобразование Лапласа. Оригиналы и изображения. Основные свойства операционного метода
		3. Исследовать на сходимость числовой ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n+5)\ln(2n+5)}.$
		4. Определить интервал сходимости функционального ряда $\sum_{n=1}^{\infty} (-1)^n \frac{9^n}{5^n \cdot (x-2)^n}.$
		5. Разложить в ряд Лорана функцию $f(z) = (z-3)^2 e^{-1/z}$ по степеням z .
		6. Вычислить $\ln(-\sqrt{3}+i)^2$
		7. Найти коэффициент растяжения плоскости $z=x+iy$ в точке $z_0=2i-3$ при отображении $f(z)=(7i+2)\ln{(2z)}$

Оценочные мероприятия	Примеры типовых контрольных заданий
	8. Найти угол поворота плоскости $z = x + iy$ в точке $z_0 = 1$ при отображении
	$f(z) = \frac{2z + 3i}{iz + 4}$
	9. Изобразить область, заданную неравенствами
	$ z-i \le 3$, $ z+1 \ge 1$, $5\pi/6 < \arg z \le 5\pi/4$.
	10. Вычислить интеграл $\oint_{ z+2 =1,5} \frac{e^{iz}}{(z+\pi)^3} dz$
	11. Найти изображение для функции $f(t) = t \cdot \cosh 3t \cdot \sin 2t$
	Перечень вопросов, ответы на которые дают возможность студенту продемонстрировать, а преподавателю оценить степень усвоения теоретических и фактических знаний на уровне знакомства
	Числовые и функциональные ряды. Ряды Фурье
	 Понятие числового ряда, его суммы. Необходимый признак сходимости.
	• Свойства сходящихся рядов.
	 Своиства сходищихся рядов. Сравнительный признак сходимости знакоположительных рядов. Эталонные ряды.
	 Сравнительный признак сходимости знакоположительных рядов. Эталонные ряды. Признак Д'аламбера. Для каких видов числовых рядов он эффективен?
	• Радикальный признак Коши. Для каких видов числовых рядов он применяется?
	• Интегральный признак Коши-Маклорена. В каких случаях его следует применять?
	 Признак Лейбница сходимости знакочередующихся рядов. Как проводится оценка суммы
	и остатка такого ряда? Понятие абсолютной и условной сходимости.
	• Понятие функционального ряда и области его сходимости. Равномерная и абсолютная
	сходимость? Свойства равномерно и абсолютно сходящихся рядов.
	• Понятие степенного ряда. Теорема Абеля.
	• Интервал и радиус сходимости степенного ряда. Способы нахождения интервалов
	сходимости.
	• Ряды Тейлора и Маклорена для данной функции. Условия разложения функции в ряд
	Тейлора. Схема построения ряда Тейлора (Маклорена).
	• Ряды Маклорена для некоторых элементарных функций, интервалы их сходимости.
	Использование готовых разложений для получения разложения в ряд Маклорена более
	сложных функций. Применение степенных рядов в приближенных вычислениях.

Оценочные мероприятия	Примеры типовых контрольных заданий
	• Понятие тригонометрического ряда. Формулы Фурье для нахождения коэффициентов
	ряда (функция периодическая и заданная на интервале $[-\pi;\pi]$).
	• Теорема Дирихле об условиях разложения функции в ряд Фурье.
	• Формулы Фурье для четных и нечетных функций.
	• Формулы Фурье для случая разложения функции, заданной в произвольном интервале $[-l;l]$.
	• Разложение в ряд Фурье непериодических функций.
	Комплексные числа и функции. Теория вычетов
	• Понятие комплексного числа, его действительной и мнимой части.
	• Алгебраическая форма записи комплексного числа. Какие комплексные числа называются равными, комплексно - сопряженными?
	 Арифметические действия над комплексными числами, записанными в алгебраической форме.
	• Геометрическое представление комплексного числа, комплексная плоскость. Модуль и аргумент комплексного числа.
	• Тринонометрическая и показательная форма записи комплексных чисел. Переход из одной формы записи комплексного числа к другой.
	• Возведение в степень и извлечение корня из комплексного числа. Формулы Муавра.
	 Понятие функции комплексного переменного. Предел и непрерывность функции. Показательная, логарифмическая, тригонометрические, гиперболические и обратные
	тригонометрические функции комплексного переменного.
	• Дифференцирование функции комплексного переменного. Условия Коши-Римана.
	• Сопряженные гармонические функции.
	• Понятие аналитической функции комплексного переменного в области. Необходимые и достаточные условия аналитичности.
	• Геометрический смысл модуля и аргумента производной функции комплексного переменного.
	 Понятие интеграла от функции комплексного переменного и его основные свойства. Вычисление интегралов.
	 Интегральная теорема Коши. Интегральная формула Коши и ее следствия.
	• Числовые и функциональные ряды с комплексными членами.
	• Степенные ряды. Теорема Абеля. Ряд Тейлора. Теорема о разложении аналитической

Оценочные мероприятия	Примеры типовых контрольных заданий
	функции в ряд Тейлора.
	• Ряды Лорана, определение. Теорема Лорана о разложении аналитической функции в
	кольце в ряд. Понятие аналитического продолжения.
	• Особые точки и их классификация. Вычет функции в изолированной особой точке.
	Формулы для вычисления вычетов.
	• Основная теорема о вычетах.
	• Применение вычетов к вычислению определённых интегралов
	Операционный метод
	 Дайте определение преобразования Лапласа. Какая функция может служить оригиналом? Что называется изображением функции по Лаплассу?
	• Запишите таблицу изображений наиболее часто используемых элементарных функций.
	• Сформулируйте и запишите свойство линейности. Как оно используется для нахождения изображения по оригиналу и наоборот?
	• Сформулируйте и запишите свойства дифференцирования изображения и оригинала. Как они используются для нахождения изображения по оригиналу и наоборот?
	• Сформулируйте и запишите свойства интегрирования изображения и оригинала. Как они используются для нахождения изображения по оригиналу и наоборот?
	• Сформулируйте и запишите свойства запаздывания и смещения. Как они используются для нахождения изображения по оригиналу и наоборот?
	• Дайте понятие свертки функций. Как записывается изображение свертки? Как можно использовать формулу свертки для. нахождения изображения по оригиналу и наоборот?
	• Изложите схему нахождения частного решения линейных дифференциальных уравнений операционным методом.
	• Изложите схему нахождения частного решения систем линейных дифференциальных
	уравнений операционным методом.
	• Запишите и поясните формулу Дюамеля.
	• Понятие функций Хависайда (η -функция) и Дирака (δ -функция).

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	В семестре студенты выполняют 2 контрольных работ, содержание которых охватывает все
		дисциплины. Каждому студенту выдается свой вариант. Контрольные работы проводятся в часы

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		практических занятий. За каждую контрольную работу максимальный балл определяется в соответствие с рейтинг-планом дисциплины. Критерии оценки задания: • Баллы за контрольную работу получаются умножением максимального балла, предусмотренного за нее в соответствие с рейтинг- планом, на долю верно выполненных заданий.
2.	ИДЗ	В семестре студенты выполняют 5 ИДЗ по всем разделам программы дисциплины. У каждого студента в группе свой вариант ИДЗ, номер варианта соответствует порядковому номеру студента в списочном составе группы. Преподаватель обеспечивает своевременное получение студентами вариантов ИДЗ, а также предоставляет электронную ссылку на сборник ИДЗ. Все ИДЗ размещены в электронном курсе по дисциплине. ИДЗ выполняются в отдельной тетради, при оформлении каждого задания обязательно указывается его номер, приводится кратко условие каждого задания. Решение каждого задания должно быть подробным, с включением промежуточных расчётов, рассуждений, пояснений, с указанием использованных методов и формул. ИДЗ проверяет преподаватель, ведущий практические занятия. Студенты должны выполнить ИДЗ до контрольной работы по теме. За каждое ИДЗ выставляются баллы, максимальный балл указывается в рейтинг-плане.
		Критерии оценки одного задания: Задание считается зачтенным, если выполнено более половины заданий Если задание не зачтено, работа возвращается студенту на доработку. Студенты могут исправлять неверно решенные задания и сдавать на повторную проверку.
3.	Экзамен	Преподаватель может учесть исправления и добавить баллы к предыдущим Шкалы оценивания применимы для дисциплин, которые реализовывались с 27 августа 2018 (Вступили в действие «Система оценивания результатов обучения в ТПУ (Система оценивания)» приказ №58/од от 25.07.2018 г.) «Положение о проведении текущего контроля и

Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
	промежуточной аттестации в ТПУ приказ №59/од от 25.07.2018 г.»
	На экзамене студенту выдаются билеты, включающие теоретические вопросы и практические
	задания. Преподаватель, проверив работу, в ходе устной беседы со студентом может задавать
	вопросы по самому билету, а также дополнительные вопросы по теории и практике. В итоге студент
	набирает итоговый балл за экзамен, максимально 40 баллов. Оценка за дисциплину формируется как
	итоговая за работу в семестре и экзамен в соответствие с принятой шкалой оценивания.
	Студенты, не сдавшие экзамен в сессионный период, могут пересдать его в периоды ликвидации
	задолженностей в соответствие с действующей процедурой.
	Результаты промежуточной аттестации оформляются ведомостью и вносятся в зачетную книжку
	обучающегося.