

APPROVED BY

Director of Nuclear Science & Engineering School -+Oleg Yu. Dolmatov 2020

Course Name: Design, Maintenance and Engineering of Nuclear Power Plants

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Specialization: Nuclear Power Engineering

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: semester 3, year 2

ECTS: 3

Total Hours: 108

Contact Hours: 48

- Lectures: 24
- Labs: 16
- Practical experience: 8

Self-study: 60

Assessment: Exam Division: Nuclear-Fuel Cycle

	6
Director of Programme	/Vera V. Verkhoturova
Instructor	/Konstantin V. Slyusarskiy

Course name: Design, Maintenance and Engineering of Nuclear Power Plants

Course Overview

	The objective of mastering the discipline is the formation of certain set of
	student's competence to prepare them for professional activities. Current course is
	aimed to form a following competences:
	1. Able to run the project on different stages of its life cycle.
	2. Able to apply modern communication technology for academic and
	professional interactions including those on foreign language.
	3. Able to formulate goal and objectives of research, chose evaluation
Course	criteria, prioritize solution of tasks.
Objectives	4. Able to manage the personnel considering behavior motives and methods
	of personnel professional behavior development, apply methods for
	evaluation of quality and results of personnel work, develop and
	implement means of prophylaxis and prevention of industrial injuries,
	prevention of ecological failures.
	5. Able to analyze technical and calculation-theoretical solutions, consider
	their accordance to requirements of law in field of industry, ecology,
	safety and other normative acts.
	Upon completion of the course, a graduate will obtain the knowledge of:
	- the stages of the project life cycle;
	 the stages of project development and implementation;
	- the features of professional etiquette of western and domestic cultures;
	- the basics of structuring a report and preparing presentations using foreign
	language, accepted in the international environmentm
	- the goals and objectives of scientific research in the field of professional
	activity, basic principles and methods of their organization;
	- the technical conditions, standards for installation, repair, adjustment, testing
	of equipment assigned to NPP units;
	- the rules for assessing the compatibility of equipment, components, materials
Learning	and semi-finished products supplied to nuclear facilities;
Outcomes	- the main directions of creating fundamentally new nuclear reactors and power
	plants that meet modern safety and environmental requirements.
	Upon completion of the course, graduates are also expected to develop the
	following skills:
	- to develop a project taking into account the analysis of alternative options for
	its implementation, determine the target stages, the main directions of work;
	- to explain goals and formulate tasks related to the preparation and
	implementation of the project, determine the main stages and directions of
	work;
	- to compile and present technical and scientific information used in professional
	activities in the form of a presentation;
	- to perceive authentic audio and video materials related to training direction;
	- to compose a general plan of work on a given topic, suggest research methods

	 and methods of result processing; to apply optimization methods for planning working hours, consumption of
	materials, energy and fuel;
	- to determine the degree of influence of identified defects on the technical condition of the equipment of the owner unit:
	- to apply methods of simulation calculation and experimental research in the
	field of the development of new nuclear reactors and power plants:
	 to analyze the design decisions of the existing and developing power plants;
	 to calculate the basic physical characteristics of nuclear reactors:
	- to compose technical documentation (work schedules, instructions, plans,
	estimates, requests for materials, equipment, operating instructions);
	- to perform an approximate or evaluation engineering calculation of equipment,
	station indicators;
	- to apply methods of engineering calculations of processes in nuclear reactors
	and power plants.
	Upon completion of the course, graduates should acquire the practical
	- applying methods of development and project management:
	- applying methods for assessing resource requirements and project
	effectiveness;
	- applying skills of monologue speech in a foreign language according to the
	profile of specialty, reasonably expressing his position and using auxiliary
	means (tables, graphs, charts, etc.);
	 applying acquired knowledge of a foreign language at a sufficient level in his future professional activities;
	- applying systematic knowledge in the field of future professional activity;
	- applying in-depth knowledge on the chosen direction of training, basic skills
	for conducting research on the proposed topic;
	– performing engineering calculations for the main types of professional tasks;
	 safety analysis of existing nuclear power plants;
	- conducting thermohydraulic calculation of reactors and other technological
	equipment using modern methods;
	- drawing schemes, graphs, drawings, diagrams, nomograms and other
	- using his knowledge to solve specific problems for comparative assessments
	in situational circumstances and when making alternative decisions:
	- calculating the effectiveness and layout of the control system and reactor
	protection
	The target course is taught using a variety of teaching forms such as:
	- 12 lectures;
	-8 labs;
Course	- 4 practical experiences;
Course	- 4 individual homework assignments;
Jumic	- o lab reports. The course consists of 12 sections, which are indicated below
	Section 1. Introduction
	Section 2. Indicators of thermal and overall efficiency of nuclear power plants
	Section 3. The parameters of the coolant and working fluid in nuclear power

	-
	plants
	Section 4. NPP Schemes
	Section 5. Feeding Installations
	Section 6. NPP condensation units
	Section 7. Parameters and schemes of external steam separation and intermediate
	overheating at nuclear power plants
	Section 8 Deseration plants
	Section 0. Determination plants.
	besting
	Section 10. Main reactor circuit and its auxiliary systems
	Section 11. Pipelines and NPP fittings
	Section 12. NPP General Plan. The layout of the main building.
	Each section includes several lectures and practical experiences.
	The course ends with an ecamination.
	Learners' self-study is arranged in a form of individual homework assignments
	and individual research of the topics. During the course of study, learners are
	expected to complete 4 individual homework assignments.
	Individual homework assignment is a set of tasks each containing unique set
	parameters. It is obligatory for each student to present the results of individual
	homework assignment completion in a form of a report. The report must have a
	title page initial data task solution conclusions and final statement. The report
	must be defended in class. This suggests students answering from 3 to 5 questions
	related to the topic of the assignment
	Lab is performed in groups of 2.2 students. Each group receive their individual set
	Lab is performed in groups of 2-5 students. Each group receive their individual set
	of data. The results of lab performance must be presented in a report. The report
	must have a title page, initial data, description of solution methods, solution,
	conclusions, and final statement. The report must be defended in a class by the
	group. This suggests each student within a group answering up to 3 questions
	related to the topic of the assignment.
	The content of the course covers 12 topics. Each topic is studied through lectures,
	practical experiences and labs.
	Section 1. Introduction
	Content and course construction. Recommended literature. Nuclear energy, its
	role and development prospects in the energy sector of the world. Types and
	classification of nuclear power plants. Simplified diagrams of the main types of
	nuclear power plants (NPP): with pressurized water reactors (PWR and WWER),
	fast reactors (BN), with channel water-graphite reactors (RBMK); nuclear
	combined heat and power plant (CHPP) and heating nuclear plant (HNP). The
	main requirements for nuclear power plants: cost-effectiveness, safety, reliability
Course	environmental friendliness
Structure	Lecture tonic:
	1 Introduction content and structure of the course. Types and characteristic
	features of modern NDPs. Basic requirements for modern NDPs
	Section 2 Indicators of thermal and everall officiency of nuclear newer
	section 2. Indicators of thermal and overall efficiency of nuclear power
	plants
	Indicators of thermal efficiency of turbine installation and NPP power unit. The
	energy balance of nuclear power plants. Features of determining the indicators of
	inernial efficiency of a nuclear power plant during combined supply of electricity
	and heat. Indicators of the overall efficiency of nuclear power plants.

Lecture topic:
2. NPP efficiency indicators. Energy balance of NPPs. Features of determining the
indicators of efficiency of NPP with and without heat release.
Lab topic:
1. Study of the composition of the main equipment of the turbine site of nuclear
power plants.
Practice topic:
1. Determination of NPP efficiency indicators in the condensation and
cogeneration mode.
Section 3. The parameters of the coolant and working fluid in nuclear power
plants
The influence of the initial parameters of steam on the thermal efficiency of
nuclear power plants and on technical and economic indicators. Selection and
justification of the initial parameters of the working fluid and the coolant at
nuclear power plants of various types. Selection and justification of the final
parameters of steam in nuclear power plants.
Lecture topic:
3. The influence of initial and final parameters on the efficiency of NPP.
Justification of the choice of values of the corresponding parameters for various
types of NPP.
Section 4. NPP Schemes
Technological and thermal schemes. The principal thermal scheme (PTS) of
nuclear power plants. Content of PIS. Examples of PIS of standard nuclear
power plants. Methods and objectives of calculating the P1S. Features of turbine
units of saturated steam at nuclear power plants. Examples of full thermal
schemes of NPP power units.
4 Technological schemes of modern NDD: classification content features
4. Technological schemes of modern NPP: classification, content, reatures.
I ab tonic:
2 Study of the principal thermal scheme of NPP
2. Study of the principal merinal scheme of NTT.
Feedwater nump installations. Types of nump groups (one and two lift schemes)
Booster pumps Types of drive of feed pumps Circuits for driving turbines NPP
number Classification device and principle of operation
Pump-less movement: the concept and patterns of the hubbling process. Steam
distribution perforated sheets: design characteristics working conditions. The
concept of the contour of the natural circulation (CNC). Driving head along the
contour of the natural circulation and its determining factors. The sequence of
calculation of the CNC
Lecture tonic:
5. Feeding pumping units: purpose device principle of operation Features of
injection equipment of NPP. Head-less movement: concept, implementation
principle, application at NPP. The circuit of natural circulation
Lab topic:
3. Study of the design of feeding and condensation pumps.
4. Study of the design of the main circulation pump.
Section 6. NPP condensation units
Condensation units of NPP: purpose, principle of operation, design and features
Factors determining the vacuum in the condenser (cooling water temperature)

vacuum in the condenser etc.). Ways of non-condensable gases into the condenser and methods of removing the vapor-air mixture.

Ejector installations: purpose, composition and schemes including start-up and main ejectors. The design of the ejectors.

Lecture topic:

6. Condensation units. Design and principle of operation. Features of the calculation of condensers. Conditions for safe and efficient operation of condensers.

Practice topic:

2. Determination of the optimal pressure in the condenser of an NPP.

Section 7. Parameters and schemes of external steam separation and intermediate overheating at nuclear power plants

The purpose of intermediate steam superheating. Types of intermediate steam overheating at nuclear power plants. The inclusion of separation and intermediate heating in the scheme of nuclear power plants. Optimum values of pressure and temperature of an intermediate overheating. Types and arrangement of separators and superheaters. Features of nuclear power plant separators.

Lecture topic:

7. Intermediate steam overheating at NPPs: purpose, principle of operation, features. Devices for separation and intermediate overheating at NPPs with reactors of different kinds.

Section 8. Deaeration plants.

Necessity of deaeration. Routes of gases in the tubes of nuclear power plants. Methods of gas removal from feed water. The physical basis of thermal deaeration, the factors determining its effectiveness. Classification of thermal deaerators. The composition of the deaerated feedwater unit (DFU). The inclusion of thermal deaerators feed water in the thermal scheme of nuclear power plants. Constructive execution of the DFU. Placement of feedwater deaerators in the building of nuclear power plants.

Lecture topics:

8. Deaeration: definition, necessity, implementation methods. Design and features of NPP deaerators, their classification and principle of operation. Control test.

Practice topic:

3. Determination of the optimal selection pressure for powering the NPP deaerator.

Section 9. Parameters and equipment of the system of regenerative feedwater heating

Influence of feedwater temperature on the efficiency of the power unit. Schemes for the inclusion of surface and mixing regenerative heaters. The use of drainage coolers. Block diagrams of high and low pressure channels Surface and mixing regenerative heater designs.

Lecture topics:

9. Regeneration: definition, necessity, implementation methods. Design and features of regenerative heaters of NPP, their classification and principle of operation. The basics of choosing the amount and calculation of regenerative heaters.

Practice topic:

4. Calculation of the parameters of the regenerative heating system of NPP.

Section 10. Main reactor circuit and its auxiliary systems

Process flow diagram of the primary circuit using the WWER-1000 as an

	example. Pressure compensation system. Technological systems associated with
	the primary WWER circuit. The system of purging, feeding and boron regulation
	of the primary circuit of nuclear power plants with WWER reactors, subsystems.
	The system of organized leaks. System of industrial circuit. System of high-
	temperature cleaning coolant. System SGC-2. Reactor systems for nuclear power
	plants with RBMK and BN.
	Lecture topic:
	10. Schematic diagram of the primary circuit on the example of WWER-1000.
	Pressure compensation system. Technological systems associated with the first
	circuit of WWER. A system of organized leaks. Industrial circuit system. The
	system of high-temperature cleaning of the coolant.
	Lab topic:
	5. Studying the special gas cleaning system.
	6. Study of systems and layout solutions of the WWER reactor compartment.
	7. Study of the systems and layout solutions of the BN reactor compartment.
	Section 11. Pipelines and NPP fittings
	Classification of plant pipelines. Materials of pipelines at NPP. Fastened
	pipelines. Thermal insulation of pipelines. Fitting classification by purpose and
	parameters Construction of shut-off control and safety valves Purpose and
	schemes for the inclusion of reduction and reduction-cooling installations
	Lecture tonic.
	11 Classification of station pipelines Thermal insulation of pipelines
	Classification of valves according to their purpose and parameters. The device of
	locking regulating and safety valves. Appointment and schemes of inclusion of
	reduction and reduction and cooling units (RU FRU RCU FRCU)
	I ab topics:
	8. The study of the effect of bleed on the efficiency of the turbine drive
	Section 12 NDD Conorel Plan. The levent of the main building
	Section 12. WIT General Flan. The layout of the main bunding.
	layouts and general layout of nuclear power plants. Dequirements for the layout of
	the main building. Types of NDD levents. Consered principles of the levent of the
	main building. The levent of the equipment of the reactor and turking
	main bunding. The layout of the equipment of the reactor and turbine
	departments, deaerator department.
	Lecture topic:
	12. General plan and layout of NPP. leactor and turbine sections, auxiliary
	NDD Control test
	1 Leasture hall with multimodic equipment: Temely Leaster and 200 huild 4 recent
Facilities and	1. Lecture nan with multimetria equipment. Tomsk, Lenin ave. 50a, build. 4, 100in
Equipment	301.
	2. Computer classicolin. Tomsk, Lenin ave. 50a, build. 4, tooliis 51.
	Current accordance with IFO fating system we use.
	- Current assessment which is performed on a regular basis during the semester
	by scoring the quality of mastering of theoretical material and the results of
Care d'ar a	practical activities (control tests, defense of individual task and lab reports).
Grading	Max score for current assessment is 80 points, min – 44 points.
Policy	- Course final assessment (exam) is performed at the end of the semester. Max
	score for course final assessment is 20 points, $\min - 11$ points.
	The final rating is determined by summing the points of the current assessment
	during the semester and credit test scores at the end of the semester. Maximum
	overall rating corresponds to 100 points, min pass score is 55.

Course Policy	Attendance is strictly controlled. All classes are obligatory for attendance.
Teaching Aids and Resources	 Compulsory reading: 1. Breeze, P. Combined Heat and Power [Электронный ресурс] / Р. Breeze. — Электрон. дан. — Elsevier Ltd.: Academic press, 2018. — 95 р. — Режим доступа: https://ezproxy.ha.tpu.ru:2056/book/9780128129081/combined-heat- and-power. — Загл. с экрана. Additional reading: 1. Structural Materials for Generation IV Nuclear Reactors [Электронный ресурс] / edited by Pascal Yvon Электрон. дан. — Elsevier Ltd.: Woodhead Publishing, 2017664 р Режим доступа: https://www.sciencedirect.com/book/9780081001493/handbook-of-generation- iv-nuclear-reactors Загл. с экрана.
Instructor	Dr. Konstantin V. Slyusarskiy, Associate professor, The Butakov Research Center, School of Energy and Power Engineering, TPU, e-mail: <u>konstantinsv@tpu.ru</u> , phone: +7 (3822) 701-777 (ext. 1697) Personal site: <u>https://portal.tpu.ru/SHARED/k/KONSTANTINSV/eng</u>