

APPROVED BY

Director of Nuclear Science & Engineering School Olég Yu. Dolmatov 2020

Course Name: Thermal Hydraulics in Nuclear Reactors

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Specialization: Nuclear Power Engineering

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: semester 1, year 1

ECTS: 4

Total Hours: 144

Contact Hours: 48

• Lectures: 24

Practical experience: 24

Self-study: 96

Assessment: Credit-test

Division: Nuclear Fuel Cycle

Director of Programme Professor

Vera V. Verkhoturova Alexander G. Korotkikh

Course name: Thermal Hydraulics in Nuclear Reactors

Course Overview

Course Objectives	The objective of the course is to form a set of competences (learning outcomes)
	which will enable graduates to carry out their professional activity in the field of
	thermal physics and operation of nuclear reactors at nuclear power plants.
	Upon completion of the course, a graduate will obtain the knowledge of:
	- basics of structuring a report and preparing presentations using foreign
	language, accepted in the international environmentx
	- goals and objectives of scientific research in the field of professional
	activity, basic principles and methods of their organization;
	 thermohydraulic calculations of nuclear power plants;
	 heat exchange equipment using modern methods;
	 calculation programs and information sources,
Learning Outcomes	Upon completion of the course, graduates are also expected to develop the
	following skills:
	- to develop a project taking into account the analysis of alternative options
	for its implementation, determine the target stages, the main directions of
	work;
	- to explain goals and formulate tasks related to the preparation and
	implementation of the project, determine the main stages and directions of
	work;
	- to compile and present technical and scientific information used in
	professional activities in the form of a presentation;
	 to perceive authentic audio and video materials related to training direction;
	 to compose a general plan of work on a given topic, suggest research methods and methods of result processing;
	- to perform thermohydraulic calculations of nuclear power plants, heat
	exchange equipment using modern methods;
	 to use calculation programs and information sources;
	- to search and analyze information related to structures and operating
	experience of nuclear power plants, fuel elements, structural materials
	using scientific citation databases.
	Upon completion of the course, graduates should acquire the practical
	experience in:
	 applying methods of development and project management;
	- applying methods for assessing resource requirements and project
	effectiveness;
	- applying skills of monologue speech in a foreign language according to the
	profile of specialty, reasonably expressing his position and using auxiliary
	means (tables, graphs, charts, etc.);
	 applying acquired knowledge of a foreign language at a sufficient level in his future professional activities;
	 applying systematic knowledge in the field of future professional activity;
	apprying systematic knowledge in the field of future professional activity,

	- applying in-depth knowledge on the chosen direction of training, basic
	skills for conducting research on the proposed topic;
	- performing thermohydraulic calculations of nuclear power plants, heat
	exchange equipment using modern methods.
	The target course is taught using a variety of teaching forms such as:
	- 12 lectures;
	– 12 practical experiences;
	- 3 individual homework assignments;
	- 2 reviews:
	-2 tests;
	- 1 colloquium.
	The course consists of four sections, which are given below.
	Section 1. Heat release in a nuclear reactor.
	Section 2. Thermal conductivity in a nuclear reactor.
	Section 3. Convective heat transfer in a nuclear reactor.
	Section 4. Heat transfer by radiation in a gas cooled nuclear reactor.
	Each section includes several lectures and practical experiences.
	During the course, students perform practical tasks and 2 tests. The course ends
Course	with a colloquium.
Outline	Learners'self-study is arranged in a form of individual research of the topics and
	individual homework assignments. During the course of study, learners are
	expected to complete three individual homework assignments and two reviews.
	Individual homework assignment is a set of tasks each containing unique set
	parameters. It is obligatory for each student to present the results of individual
	homework assignment completion in a form of a report. The report must have a
	title page, initial data, task solution, conclusions, and final statement. The report
	must be defended in a class. This suggests students answering from 3 to 5
	questions related to the topic of the assignment.
	<i>Review</i> is given to the student by the teacher with an indication of the databases
	and the deadlines for the assignment. The topic of review must be thoroughly
	researched. The materials of the review work must be presented in paper. Review
	includes the literature overview on the given topic and shall have the following
	parts: a title page, outline, introduction, main body sections, conclusion and
	reference list.
	The content of the course covers four main sections. Each section is studied
	through lectures and practical experiences.
	Section 1. Heat release in a nuclear reactor
	Lecture 1. The nuclear reactors. Processes of heat release in the core of nuclear
	reactor.
	Lecture 2. The distribution of the heat release in a nuclear reactor.
	Practical experience 1. Designs and characteristics of nuclear reactors.
Course	Practical experience 2. Calculation of the heat generated in the core of nuclear
Structure	reactor.
	Section 2. Thermal conductivity in a nuclear reactor.
	Lecture 3. Conductive heat flux. Fourier law. Thermal conductivity coefficient.
	Lecture 4. Steady-state conduction in a nuclear reactor design.
	Lecture 5. Heat conduction with the heat release in a fuel rod.
	Lecture 6. Unsteady heat conduction during cooling (heating) of body.
	Practical experience 3. Calculation of the heat flux and the temperature
	distribution in bodies of various shapes.
L	

	Practical experience 4. Calculation of the heat flux on the surface of the nuclear
	reactor design.
	e
	Practical experience 5. Calculation of the heat flux and the temperature distribution in the fuel element.
	Practical experience 6. Calculation of the heat release during shutdown of a
	nuclear reactor and temperatures in structures during their cooling (heating).
	Section 3. Convective heat transfer in a nuclear reactor.
	Lecture 7. Newton-Richman Law. Similarity and modeling of the convective heat
	transfer.
	Lecture 8. Heat transfer in a single-phase medium with free and forced flow of the
	coolant.
	Lecture 9. Heat transfer at the forced longitudinal and cross-washing tubes, tube
	and rod bundles. Heat transfer of liquid metal coolant.
	Lecture 10. Heat transfer during boiling and condensation. Critical heat flux. Lecture 11. The principle of thermohydraulic calculation of the nuclear reactor
	core cooled by single-phase and two-phase flows.
	Practical experience 7. Calculation of heat transfer in natural circulation of the
	coolant.
	Practical experience 8. Calculation of heat transfer in forced circulation of the
	coolant.
	Practical experience 9. Calculation of heat transfer in the forced longitudinal and
	cross-washing tubes, tube and rod bundles.
	Practical experience 10. Calculation of heat transfer during boiling liquid, heat
	transfer crisis in fuel assemblies.
	Practical experience 11. Thermohydraulic calculation of the nuclear reactor core.
	Thermal calculation of heat exchange equipment.
	Section 4. Heat transfer by radiation in a gas cooled nuclear reactor. Lecture 12. Heat transfer by radiation in a gas cooled nuclear reactor.
	Practical experience 12. Calculation of complex heat transfer in power plants.
Facilities and	1. Lecture hall with multimedia equipment and computers: Tomsk, Lenin ave.
Equipment	30a, build. 4, room 31.
Equipment	In accordance with TPU rating system we use:
	- Current assessment which is performed on a regular basis during the
	semester by scoring the quality of mastering of theoretical material and the
Crading	results of practical activities (performance control questions, practical
Grading Policy	problems). Max score for current assessment is 100 points, min -55
roncy	pionents). Max score for current assessment is foo points, min – 55 points.
	-
	- Course final assessment (credit test) is performed at the end of the
Course Deliev	semester according to the results of the current rating.
Course Policy	Attendance at lectures and practical experience are compulsory.
Teaching	Compulsory reading:
Aids and	1. Прибытков И. А. Thermophysics = Теплофизика : учебное пособие / И. А.
Resources	Прибытков. — Москва : МИСИС, 2019. — 97 с. — Текст : электронный //
	Лань : электронно-библиотечная система. — URL:
	<u>https://e.lanbook.com/book/129050</u> (дата обращения: 17.12.2020). — Режим
	доступа: из корпоративной сети ТПУ.
	Additional reading:

	доступа: https://ezproxy.ha.tpu.ru:2056/book/9780128129081/combined-heat- and-power. — Загл. с экрана.
Instructor	Alexander G. Korotkikh, Professor, the Butakov Research Center, School of Energy and Power Engineering, +7 (3822) 701-777 (ext.1680),e-mail: korotkikh@tpu.ru, personal site: https://portal.tpu.ru/SHARED/k/KOROTKIKH/eng