

APPROVED BY

Director of Nuclear Science & Engineering School
Oleg Yu. Dolmatov
"25" 06 2020

Course Name: Dosimetry and Protection from Ionizing Radiation

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Specialization: Nuclear Power Engineering **Level of Study:** Master Degree Programme

Year of admission: 2019

Semester, year: semester 1, year 1

ECTS: 3

Total Hours: 108 Contact Hours: 32

Lectures: 16

• Laboratory work: 16

Self-study: 76

Assessment: Graded credit Test

Division: Nuclear Fuel Cycle

Director of Programme

Instructor

/ Vera V. Verkhoturova

/ Valentina S. Yakovleva

Course Name: Dosimetry and Protection from Ionizing Radiation

Course Overview

	The objective of the course is to form a set of commetences (learning systems)
Course Objectives	The objective of the course is to form a set of competences (learning outcomes) to prepare students for operational and engineering activities involving application of methods for dosimetry and radiation protection, assessment and analysis of attenuation of radiation in a substance and radiation exposure risks, nuclear and radiation safety improvement.
Learning Outcomes	<u> </u>
	- using dosimetry and radiometry methods to assess levels of radiation
Course Outline	hazardous environmental factors, of substances and materials radioactivity.
Course Outline	The course is taught using a variety of teaching forms, including lectures,

	practical experience and learners' self-study.
	The course includes the following obligatory components:
	- 8 lectures;
	8 laboratory works;
	- 2 tests (in a written form).
	Main sections of the course are as follows:
	 Characteristics of ionizing radiation fields (lectures – 2 hours, lab – 2 hours);
	 Quantities and units of the measurement of ionizing radiation (lectures – 4
	hours, lab – 4 hours);
	 Dosimetric and radiometric measurement methods and means (lectures – 6
	hours, lab – 6 hours);
	 Protection against ionizing radiation (lectures – 4 hours, lab – 4 hours).
	The course ends with a graded credit-test. Learners are expected to demonstrate
	-
	their knowledge, skills and understanding of the course material by giving full
Prerequisites	and extensive answers to 4 questions each referring to one of the course sections. 1. Nuclear Physics
(if available)	2. Special chapters of Advance Mathematics
(II available)	The target course consists of the five sections.
	Section 1. Characteristics of ionizing radiation fields
	Introduction to dosimetry. Course main aims and objectives. Characteristics of
	ionizing radiation fields.
	Section 2. Quantities and units of ionizing radiation measurement
	Basic and equi-dosimertic quantities and units of their measurements. Ionizing
	radiation interaction with matter. Relative biological effectiveness of radiation.
Course	The Inverse Square Law. Gamma-Equivalent. Specific Gamma-Ray Constants.
Structure	Section 3. Dosimetric and radiometric measurement methods and means
	Review of dosimetric and radiometric measurement methods. Types of
	dosimetric control. Applications of dosimetry and radiometry in radioecology
	and geophysics. Radiation monitoring arrangement.
	Section 4. Protection against ionizing radiation
	Protection against external and internal irradiation. Calculation methods for
	protection against alpha-, beta-, gamma-radiation and neutrons.
	1. Lecture room: Lenina Ave, 2, building 10, room 228
Facilities and	2 Laboratory room: Laning Ava 2 building 10 mag- 121 (classes on fac-
Equipment	2. Laboratory room: Lenina Ave. 2, building 10, room 121 (classroom for
	laboratory work equipped with dosimeters and radiometers).
	In accordance with the TPU rating system we use:
	- Current assessment which is performed on a regular basis during the
	semester by scoring the quality of mastering of theoretical material and
	the results of practical activities (performance tests, perform tasks). Max
Cuadina Dalian	score for current assessment is 10 points, min – 6 points.
Grading Policy	- Defense of lab is performed on a regular basis during the semester. Max
	score for assessment is 10 points, $min - 6$ points.
	The final rating is determined by summing the points of the current assessment
	during the semester and credit test scores at the end of the semester. Maximum
	overall rating corresponds to 100 points, min pass score is 55 points.
Course Date	Class attendance will be taken into consideration when evaluating students'
Course Policy	

	classes require obligatory presence.
Teaching Aids and Resources	Compulsory reading: 1. Stabin, M. G. Radiation Protection and Dosimetry: An Introduction to Health Physics / M. G. Stabin. – New York: Springer, 2007. – Текст: электронный // SpringerLink. – URL: https://link.springer.com/book/10.1007/978-0-387-49983-3 (дата обращения: 20.09.2020). – Режим доступа: из корпоративной сети ТПУ.
	2. Cerrito, L. Radiation and Detectors: Introduction to the Physics of Radiation and Detection Devices / L. Cerrito. – New York: Springer, 2017. – Текст: электронный // SpringerLink. – URL: https://www.springer.com/gp/book/9783319531793 (дата обращения: 20.09.2020). – Режим доступа: из корпоративной сети ТПУ.
	Additional reading: 1. Bréchignac, F. Yu. Kutlakhmedov, P. Balan, V. Kutlakhmedova-Vishnyakova, Equidosimetry – Ecological Standardization and Equidosimetry for Radioecology and Environmental Ecology / F. Bréchignac, G. Desmet. – Dordrecht: Springer, 2005. – Текст: электронный // SpringerLink. – URL: https://www.springer.com/gp/book/9781402036484 (дата обращения: 20.04.2020). – Режим доступа: из корпоративной сети ТПУ. 2. Gupta T. K., Radiation, Ionization, and Detection in Nuclear Medicine / T. K. Gupta. – Berlin; Heidelberg: Springer-Verlag, 2013. — Текст: электронный // SpringerLink – URL: https://www.springer.com/gp/book/9783642340758 (дата обращения:
Instructor	20.04.2020). — Режим доступа: из корпоративной сети ТПУ. Yakovleva Valentina Stanislavovna, Doctor of Technical Sciences, Professor of Nuclear Fuel Cycle Division, Nuclear Science & Engineering School, TPU, +7 (3822) 70182 (ext 520)9, e-mail: vsyakovleva@tpu.ru Personal page: http://portal.tpu.ru/SHARED/v/VSYAKOVLEVA/eng