МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ШБИП Чайковский Д.В. Т» сете и брег 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

ФИЗИКА 2 15.03.06 Мехатроника и робототехника Направление подготовки/ специальность Интеллектуальные робототехнические Образовательная программа (направленность (профиль)) и мехатронные системы Специализация Системы управления автономными роботами Уровень образования высшее образование - бакалавриат Курс семестр Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 32 Практические занятия 32 Контактная (аудиторная) работа, ч Лабораторные занятия 24 ВСЕГО 88 Самостоятельная работа, ч 128 ИТОГО, ч 216

Вид промежуточной аттестации	Экзамен	Обеспечивающее подразделение	ОЕН
Заведующий кафедрой- руководитель отделения на правах кафедры	C	Ruf_	Шаманин И.В.
Руководитель ООП		tery	Мамонова Т.Е.
Преподаватель		hus	Кравченко Н.С.

2020 г.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименование компетенции	Составляющие результатов освоения (дескрипторы компетенции)		
компетенции		Код	Наименование	
		УК(У)-1.В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера	
УК(У)-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК(У)-1.В2	Владеет репродуктивными методами познавательной деятельности и мыслительными операциями для решения задач естественнонаучных дисциплин	
		УК(У)-1.У1	Умеет решать задачи теоретического и прикладного характера	
		УК(У)-1.У2	Умеет обобщать усвояемые знания естественных наук категориями системного анализа и подхода и мыслительными операциями анализа, синтеза, сравнения и оценки	
		УК(У)-1.31	Знает законы естественных наук и математические методы теоретического характера	
		УК(У)-1.33	Знает репродуктивные методы познавательной деятельности, признаки системного подхода и системного анализа	
	Способен представлять адекватную современному	ОПК(У)-1.32	Владеет опытом планирования и проведения физических исследований в области электричества и магнетизма, оценки точности и погрешности измерений, анализа полученных результатов	
ОПК(У)-1	уровню знаний научную картину мира на основе знания основных положений, законов и методов	ОПК(У)-1.У2	Умеет выбирать закономерность для решения задач электричества и магнетизма, исходя из анализа условия, объяснять на уровне гипотез отклонения полученных экспериментальных данных от известных теоретических и экспериментальных зависимостей	
	естественных наук и математики	ОПК(У)-1.В2	Знает фундаментальные законы электричества и магнетизма	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	I orange and a		
Код	Наименование	Компетенция	
РД 1	Применять знания общих законов, теорий, уравнений, методов	УК(У)-1	
	физики при решении задач в профессиональной деятельности	ОПК(У)-1	
РД 2	Выполнять физический эксперимент с привлечением методов	УК(У)-1	
	математической статистики и ИТ	ОПК(У)-1	
РД 3	Владеть методами теоретического и экспериментального	УК(У)-1	
	исследования, методами поиска и обработки информации,	ОПК(У)-1	
	методами решения задач с привлечением полученных знаний		

РД 4	Владеть основными приемами обработки и анализа	УК(У)-1
	экспериментальных данных, полученных при теоретических	ОПК(У)-1
	и экспериментальных исследованиях с использованием ПК и	, ,
	прикладных программных средств компьютерной графики	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.	РД1-РД4	Лекции	14
Электростатика		Практические занятия	16
_		Лабораторные занятия	10
		Самостоятельная работа	58
Раздел (модуль) 2.	РД1-РД4	Лекции	18
Электромагнетизм. Колебания		Практические занятия	16
и волны		Лабораторные занятия	14
		Самостоятельная работа	70

Содержание разделов дисциплины:

Раздел 1. Электростатика

Электрический заряд и его свойства. Закон Кулона Электрическое поле. Напряженность электрического поля. Поле диполя. Закон Гаусса в интегральной форме и дифференциальной форме, применение теоремы к расчету полей. Работа, потенциал, связь напряженности и потенциала. Проводники и диэлектрики. Закон Гаусса для вектора электростатической индукции. Электроемкость проводников. Электрический ток. Условие существования тока. Закон Ома в дифференциальной форме. Закон Ома для полной цепи. Классическая теория электропроводности металлов и ее затруднения. Электропроводность газов. Типы самостоятельных разрядов: тлеющий, коронный, искровой, дуговой. Понятие о плазме. Электропроводность плазмы. Ток в вакууме. Закон Богуславского-Лэнгмюра. Контактные явления.

Темы лекций:

Лекция 1. Введение. Электрический заряд и его свойства. Методы измерения электрического заряда

- Лекция 2. Электростатическое поле в вакууме.
- Лекция 3. Теорема Гаусса и ее применение
- Лекция 4. Работа, потенциал, связь на пряженности и потенциала
- Лекция 5. Проводники в электрическом поле. Энергия поля
- Лекция 6. Диэлектрики в электрическом поле
- Лекция 7. Диэлектрики в электрическом поле. Поле на границе диэлектриков
- Лекция 8. Постоянный ток

Темы практических занятий:

- 1. Закон Кулона. Поле точечного заряда.
- 2. Поле распределенного заряда
- 3. Теорема Гаусса и ее применение
- 4. Работа, потенциал, связь напряженности и потенциала.

- 5. Проводники в электрическом поле. Емкость. Энергия поля.
- 6. Диэлектрики в электрическом поле. Поляризация диэлектриков
- 7. Движение заряженных частиц в электрическом поле
- 8.Законы постоянного тока. Расчет электрических цепей

Названия лабораторных работ:

- 1. Э-01. Моделирование и исследование электрических полей.
- 2. Э-05. Исследование зависимости сопротивления металлов от температуры и определение температурного коэффициента сопротивления металлов.
- 3. Э-06. Измерения электроемкости с помощью мостика Соти.
- 4. Э-07. Определение заряда иона водорода.
- 5. Э-05а. Исследование температурной зависимости сопротивления полупроводников и определение энергии активации проводимости.
- 6. Э-09. Исследование термоэлектронной эмиссии и определение работы выхода электрона из металла.
- 7. Э-11. Определение удельного заряда электрона с помощью вакуумного диода.
- 8. Э-12. Определение горизонтальной составляющей напряженности магнитного поля Земли
- 9. Э-18. Исследование полупроводниковых приборов.
- 10. Э-16. Измерение на пряже нности магнит ного поля соленоида
- 11. Э-17. Снятие кривой намагничения и определение характеристик ферромагнетика.
- 12. Э-21. Исследование плазмы положительного столба тлеющего разряда
- 13. Э-23. Измерение больших сопротивлений и емкостей методом релаксационных колебаний
- 14. Э-24. Измерение логарифмического декремента и добротности колебательного контура.
- 15. Э-25. Изучение вынужденных электромагнитных колебаний в параллельном колебательном контуре.
- 16. Э-32. Распределение Максвелла термоэлектронов по скоростям
- 17. КЭ-13. Исследование плазмы положительного столба тлеющего разряда.
- 18. МодЭ-03. Электростатическое поле.
- 19. Мод Э-04. Движение заряженной частицы в кулоновском поле.

Раздел 2. Электромагнетизм. Колебания и волны

Магнитное поле. Вектор магнитной индукции. Поток вектора магнитной индукции. Закон Гаусса для магнитного потока в интегральной и дифференциальной формах. Закон Био-Савара-Лапласа и его применение. Закон полного тока в интегральной форме и его применение. Ротор векторной функции. Закон полного тока в дифференциальной форме. Действие магнитного поля на проводники с током и заряженные частицы. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции, самоиндукции и взаимной индукции. Энергия магнитного поля. Магнетики. Понятие о колебательном движении. Гармонические колебания, затухающие и вынужденные колебания. Волны, электромагнитные волны.

Темы лекций:

- Лекция 1. Магнитное поле тока. Закон Био-Савара-Лапласа.
- Лекция 2. Закон полного тока и его применение
- Лекция 3. Сила Лоренца и сила Ампера
- Лекция 4. Магнитное поле в веществе
- Лекция 5. Электромагнит ная индукция

- Лекция 6. Гармонические ЭМ колебания. Сложение колебаний
- Лекция 7.. Затухающие и вынужденные ЭМ колебания
- Лекция 8. Уравнения Максвелла

Темы практических занятий:

- 1. Магнитное поле тока. Закон Био-Савара-Лапласа. Закон полного тока
- 2. Действие магнитных полей на проводники и контуры с током
- 3. Действие магнигных полей на движущиеся заряженные частицы.
- 4. Электромагнитная индукция. Энергия магнитного поля
- 5. Гармонические колебания. Сложение колебаний
- 6. Затухающие и вынужденные колебания.
- 7. Электромагнитные колебания
- 8. Контрольная работа

Названия лабораторных работ:

- 1. Э-15. Определение горизонтальной составляющей напряженности магнитного поля Земли.
- 2. Э-16. Измерение на пряже нности магнитного поля соленоида.
- 3. Э-17. Снятие кривой намагничения и определение характеристик ферромагнетика.
- 4. КЭ-13. Исследование плазмы положительного столба тлеющего разряда.
- 5. Э-19. Измерение больших сопротивлений и емкостей методом релаксационных колебаний.
- 6. Э-22. Измерение логарифмического декремента и добротности колебательного контура.
- 7. Э-29. Определение скорости звука, модуля Юнга и внутреннего трения акустическим методом
- 8. Э-34. Резонанс токов.
- 9. Мод Э-01. Движение заряженной частицы во взаим но перпендикулярных электрическом и магнитном полях.
- 10. Мод Э-02. Движение заряженной частицы в параллельных электрическом и магнитном полях
- 11. МодК-01. Свободные гармонические колебания
- 12. Э-16а. Исследование магнитных полей с помощью измерительной катушки
- 13. КЭ-05. Распределение Максвелла термоэлектронов по скоростям
- 14. МодК-02. Затухающие колебания
- 15. МодК-03. Сложение перпендикулярных колебаний.
- 16. МодК-04. Сложение колебаний. Биения
- 17. МодК-06. Гармонический анализ
- 18. МодК-07. Связанные колебания.
- 19. МодК-05. Вынужденные колебания.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение индивидуальных заданий и конгролирующих мероприятий, виртуальных лабораторных работ и др.);

- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий, отчетов по лабораторным работам
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах; учебно-исследовательских проектах
- Подготовка к оценивающим мероприятиям

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

- 1. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. 14-е изд., стер. Санкт-Петербург: Лань, 2018. Том 2: Электричество и магнетизм. Волны. Оптика. 500 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/98246. (дата обращения: 15.04.2020) Режим доступа: из корпоративной сети ТПУ.
- 2. Сивухин, Д. В. Общий курс физики: Для вузов. В 5 т. Т.ІІІ. Электричество: учебное пособие / Д. В. Сивухин. 6-е изд., стер. Москва: ФИЗМАТЛИТ, 2015. 656 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/72015. (дата обращения: 15.04.2020) Режим доступа: из корпоративной сети ТПУ
- 3. Детлаф А. А. Курс физики: учебник в электронном формате / А. А. Детлаф, Б. М. Яворский. 9-е изд. стер. Москва: Академия, 2014. URL: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-30.pdf. (дата обращения: 15.04.2020) Режим доступа: из сети НТБ ТПУ.-Текст: электронный
- 4. Трофимова Т. И. Курс физики: учебник в электронном формате / Т. И. Трофимова. 20-е изд., стер. Москва: Академия, 2014. Доступ из корпоративной сети ТПУ. URL: http://www.lib.tpu.ru/fulltext2/m/2014/FN/fn-98.pdf. (дата обращения: 15.04.2020) -Режим доступа: из корпоративной сети ТПУ.-Текст: электронный

Дополнительная литература

- 1. Иродов, И.Е. Электромагнетизм. Основные законы: учебное пособие / И.Е. Иродов. 10-е изд. Москва: Лаборатория знаний, 2017. 322 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/94160 . (дата обращения: 15.04.2020)— Режим доступа: из корпоративной сети ТПУ- Текст: электронный
- 2. Иродов, И.Е. Волновые процессы. Основные законы: учебное пособие / И.Е. Иродов. 7-е изд. (эл.). Москва: Лаборатория знаний, 2015. 265 с.- Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/66334 . (дата обращения: 15.04.2020) Режим доступа: из корпоративной сети ТПУ

6.2. Информационное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Электронный курс «Физика 2» https://stud.lms.tpu.ru/course/view.php?id=1927 Материалы представлены 16 модулями. Каждый модуль содержит материалы для подготовки к практическому занятию, к лекции, варианты индивидуальных домашних заданий для самостоятельной работы, тесты.
- 2. Электронный курс «Виртуальный лабораторный практикум по физике» https://stud.lms.tpu.ru/course/view.php?id=2336
 Курс представляет собой комплект виртуальных лабораторных работ. Материал структурирован по темам курса и содержит: методические указания к выполнению лабораторных работ, тесты для проверки знаний, формы отчета.

- 3. Методические указания к лабораторным работам. Режим доступа http://uod.tpu.ru/webcenter/portal/oen/method? adf.ctrl-state=13nno0xod7 4
- 4. Методические указания к практическим занятиям. Режим доступа http://uod.tpu.ru/webcenter/portal/oen/method? adf.ctrl-state=13nno0xod7 4
- 5. Информационно-с правочных система «Кодекс» http://kodeks.lib.tpu.ru/
- 6. Научно-электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 7. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/
- 8. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 9. Электронно-библиотечная система «Юрайт» https://urait.ru/
- 10. Электронно-библиотечная система «ZNANIUM.COM» https://new.znanium.com/

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ)**:

7-Zip; Adobe Acrobat Reader DC; Adobe Flash Player; AkelPad; Cisco Webex Meetings; Design Science MathType 6.9 Lite; Far Manager; Google Chrome; Microsoft Office 2016 Standard Russian Academic; Mozilla Firefox ESR; Notepad++; Putty; Tracker Software PDF-XChange Viewer; WinDjView; XnView Classic; Zoom Zoom

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование специальных	Наименование оборудования
п/п	помещений	
1	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Ленина проспект, 43 210	Комплект учебной мебели на 202 посадочных мест; Компьютер - 1 шт.; Проектор - 2 шт.
2	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034, Томская область, г. Томск, Ленина проспект, 43 ЭЛ	Маятник - 2 шт.;Вольтметр ВК-710А - 1 шт.;Модульный учебный комплекс МУК-ЭМ2 "Электричество и магнетизм" - 2 шт.;Счетчик импульсов цифр 1 шт.; Комплект учебной мебели на 30 посадочных мест

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 15.03.06 Мехатроника и робототехника / Интеллектуальные робототехнические и мехатронные системы / Системы управления автономными роботами (приема 2020 г., очная форма обучения).

Разработчик(и):

Должность	ФИО
Доцент ОЕН ШБИП	Кравченко Н.С.

Программа одобрена на заседании выпускающего отделения автоматизации и робототехники (протокол № 4a от 01.09.2020 г.).

Заведующий кафедрой - руководитель отделения на правах кафедры, к.т.н., доцент

_/Филипас А. А./

подпись