МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ И.о. директора ИШПР Гусева Н.В. «Зе» 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЁМ 2019 г. ФОРМА ОБУЧЕНИЯ очная

	Петр	офизика		
Направление подготовки/ специальность	21.05.0	3Технология ге	ологической разведки	
Образовательная программа	Технология геологической разведки			
Специализация	Геофиз	Геофизические методы исследования скважин		
Уровень образования	высшее	высшее образование - специалитет		
Курс	3	семестр	6	
Трудоемкость в кредитах	3			
(зачетных единицах)				
Виды учебной деятельности	Временной ресурс			
	Лекции		16,5	
Контактная (аудиторная)	Практические занятия		16,5	
работа, ч	Лабораторные занятия		я 11	
-		ВСЕГО	44	
C	амостоя	гельная работа,	ч 64	
		ИТОГО,	ч 108	

Вид промежуточной аттестации	экзамен	Обеспечивающее подразделение	ОГ
Заведующий кафедрой - руководитель ОГ на правах кафедры	A.	Fred .	Гусева Н.В.
Руководитель ООП Преподаватель	(Blees	Ростовцев В.В. Соколов С.В.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наукатарамия учетинатар	Составляющие результатов освоения (дескриптор компетенций)	
компетенции Наименование компетенции		Код	Наименование
			Навыками определения параметров горных пород по геофизическим аномалиям
	способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физикоматематический аппарат	ПСК(У)- 2.1.У4	Использовать данные о физических свойствах горных пород при проектировании и интерпретации геофизических работ
ПСК(У)-2.1		ПСК(У)- 2.1.34	Фильтрационно-емкостные и физические свойства коллекторов (электрические, радиоактивные, упругие); петрофизические модели коллекторов, способы их формирования, условия применимости и ограничения

2. Место дисциплины в структуре ООП

Дисциплина «Петрофизика» относится к вариативной части вариативного междисциплинарного профессионального модуля .

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Планируемые результаты обучения по дисциплине			
Код	Наименование			
РД-1	Знание законов распространения упругих деформаций в горных породах, взаимодействия горных пород с электромагнитными полями естественной и искусственной природы, протекания электрохимических процессов в них, радиоактивных превращений и взаимодействия р/а излучения с вещестом. Умение решать на этой основе теоретические и прикладные задачи	ПСК(У)-2.1		
РД-2	решать на этой основе теоретические и прикладные задачи. Знание понятий и видов пористости, проницаемости, глинистости, способов их определения, взаимного влияния, вертикальной и латеральной изменчивости в пластах-коллекторах. Понимание уравнений Дахнова-Арчи, Нернста, Ларионова, Дарси, Козени-Кармана. Умение проводить на основе результатов лабораторных исследований и данных ГИС корреляционно-регрессионный анализ для построения петрофизических зависимостей типа «керн-ГИС», «керн-керн». Умение на фоне вмещающих пород различать коллекторы и зоны внутри них, насыщенные разными флюидами, используя для этого сведения о УЭС пластов, их диффузионно-адсорбционной активности, естественной радиоактивности, реакции на нейтронное и гамма облучение, времени пробега упругих волн.			
РД-3	Понимание связи структуры геофизических аномалий в скважине с ФЕС коллекторов и физическими свойствами вмещающих пород. Понимание сущности петрофизического моделирования и связи петрофизики с геолого-геофизическим моделированием месторождений углеводородов.	ПСК(У)-2.1		

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.	РД-1	Лекции	8
Фильтрационно-емкостные	РД-2	Практические занятия	8
свойства коллекторов		Лабораторные занятия	6
		Самостоятельная работа	32
Раздел (модуль) 2.	РД-1	Лекции	8
Физические свойства и	РД-2	Практические занятия	8
петрофизические модели	РД-3	Лабораторные занятия	6
коллекторов		Самостоятельная работа	32

Содержание разделов дисциплины:

Раздел 1. ФИЛЬТРАЦИОННО-ЕМКОСТНЫЕ СВОЙСТВА КОЛЛЕКТОРОВ

Цели и задачи освоения дисциплины. Коллекторы и их виды. Коллектор в структуре ловушек нефти и газа. Понятие фильтрационно-емкостных свойств коллектора: пористость, проницаемость, глинистость.

Диэлектрическая проницаемость флюидов, поверхностное натяжение, смачиваемость, капиллярное давление. Порометрия. Ёмкость катионного обмена, двойной электрический слой, удельная поверхность порового пространства, сорбционная ёмкость, показатель гидрофильности, набухаемость.

Дисперсная, структурная и слоистая глинистость. Коэффициенты массовой, объемной и относительной глинистости. Петрофизические типы глин (классификация по поверхностной активности). Значение глинистости в изменении фильтрационно-емкостных свойств коллекторов.

Влажность: химически связанная, физически связанная (пленочная, углов пор и тупиковых пор, капиллярно удержанная) вода. Структура поровой воды в глинах; свойства прочно связанной (аномальной) воды.

Пористость. Классификация пор по происхождению, по размерам. Структура порового пространства, влияние размера пор на процессы формирования и разработки залежи. Обобщенная модель поровой среды.

Флюидонасыщенность: нефтеносный, газоносный и водоносный коллекторы, коэффициенты флюидонасыщения, зона предельного нефтегазонасыщения, коэффициент связанной воды.

Линейный закон Дарси, абсолютная проницаемость, уравнение Козени-Кармана; фазовые (эффективные) и относительные проницаемости; определение фазовых проницаемостей по результатам измерения капиллярного давления; граничные и критические значения водонасыщенности коллекторов.

Темы лекций:

- 1. Введение в петрофизику м-ий УВ. Св-ва флюидов и пород на контакте с ними.
- 2. Глинистость. Вода в горных породах.
- 3. Пористость и характер насыщения порового пространства.
- 4. Проницаемость.

Темы практических занятий:

- 1. Методы расчетов фазовых проницаемостей.
- 2. Расчет удельной поверхности поровых каналов коллектора

3. Подготовка базы данных для построения петрофизических зависимостей.

Названия лабораторных работ:

- 1. Структура порового пространства. Капиллярное давление.
- 2. Модели пористой среды коллектора.

Раздел 2. ФИЗИЧЕСКИЕ СВОЙСТВА И ПЕТРОФИЗИЧЕСКИЕ МОДЕЛИ КОЛЛЕКТОРА

Физические свойства пород-коллекторов нефти и газа. Физические параметры флюидов. Понятие петрофизической модели коллектора.

Электропроводность. Удельная электропроводность (удельное сопротивление). Классификация минералов по электропроводности: минералы проводники, полупроводники и диэлектрики. Факторы, влияющие на электропроводность горных пород: минеральный состав, структура, пористость и характер насыщения, температура и давление.

Модель электропроводности коллекторов. Исходные положения модели коллектора в отношении электропроводности. Модель полностью водонасыщенной породы (параметр пористости, влияние глинистости и минерализации пластовой воды); модель частично водонасыщенной породы (параметр насыщения, коэффициенты газо- и уравнения нефтенасыщенности). Петрофизические пористостью связи c нефтенасыщенностью коллектора. Уравнение Арчи-Дахнова. Петроэлектрические критерии коллектора, выхода нефти, воды и воды с нефтью.

Естественная электрическая поляризация. Контактные разности потенциалов. Виды электрической поляризации неглинистых горных пород. Электродный потенциал и поляризация окислительно-восстановительной природы. Фильтрационные потенциалы.

Модель диффузионно-адсорбционной активности коллекторов: диффузионные и диффузионно-адсорбционные потенциалы; уравнение Нернста; процессы в тонких и широких капиллярах; влияние глинистости и песчанистости коллекторов Изменение диффузионно-адсорбционной поляризации в разрезе нефтяной залежи; условие связи с пористостью и проницаемостью коллекторов. Петрофизические уравнения связи; граничные значения относительного диффузионно-адсорбционного потенциала для коллекторов.

Явление радиоактивности, закон радиоактивного распада, радиоактивное равновесие. Содержания урана, тория и калия в осадочных горных породах, разделение глин по соотношению радиоактивных элементов. Подвижности радиоактивных элементов в эпигенетических процессах на месторождениях углеводородов; радиоактивность битумов, карбонатов. Влияние литологического состава скелета (песчаники, алевролиты, карбонаты, присутствие калиевых полевых шпатов), наличие и содержание глинистого и карбонатного цемента, состава (поверхностной активности) глин на радиоактивность коллектора. Связь пористости и глинистости.

Нейтронные характеристики горных пород. Нейтроны, их взаимодействие с горными породами. Замедляющие и поглощающие свойства горных пород и флюидов.

Модель «нейтронной» пористости коллекторов. Физико-геологические основы взаимосвязи нейтронных характеристик горных пород и пористости. Водородосодержание, учет химически и физически связанной воды. Петрофизические уравнения.

Упругие свойства горных пород. Напряжения и деформации горных пород и флюидов. Упругие модули. Продольные и поперечные упругие колебания, скорости упругих волн, интервальное время, коэффициент затухания. Упругие модели горных пород. Упругие свойства осадочных горных пород, изменение с глубиной.

Акустические модели пористости: влияние глинистости и нефтенасыщенности. Физическое содержание коэффициентов в уравнениях регрессии.

Темы лекций:

- 1. Физические свойства коллекторов и флюидов. Электропроводность коллекторов.
- 2. Модель электропроводности коллектора. Модель диффузионно-адсорбионной активности коллектора.
 - 3. Радиоактивность горных пород. Модель «нейтронной» пористости.
 - 4. Упругие свойства пород-коллекторов. Акустическая модель коллектора.

Темы практических занятий:

- 1. Определение УЭС пластовых вод.
- 2. Качественная интерпретация петрофизических данных
- 3. Формирование петрофизической модели месторождения.

Названия лабораторных работ:

- 1. Физические свойства углеводородов
- 2. Характеристика сводных физико-геологические разрезов нефтеносных районов

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Перевод текстов с иностранных языков;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Выполнение курсовой работы или проекта, работа над междисциплинарным проектом;
- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям;

6. Учебно-методическое и информационное обеспечение дисциплины

6.1 Методическое обеспечение

Основная литература:

- 1. Номоконова Г.Г. Петрофизика коллекторов нефти и газа: учебное пособие. Томск. Изд-во Томского политехнического университета, 2013. 146 с.
- 2. Меркулов В.П. Геофизические исследования скважин: учебное пособие для вузов. Томск: Изд-во ТПУ, 2016. 146с.
- 3. Дьяконов Д. И., Леонтьев Е. И., Кузнецов Г. С. Общий курс геофизических исследований скважин: учебное пособие М.: Альянс, 2015. 432с.

Дополнительная литература:

1. Кобранова В.Н. Петрофизика. - М.: Недра, 1986 - 392 с.

- 2. Физические свойства минералов и горных пород при высоких термодинамических параметрах: Справочник . М.: недра. 1988. 253 с.
- 3. Петрофизическая характеристика осадочного покрова нефтегазоносных провинций: Справочник. М.: Недра, 1985. 193 с.
- 4. Физические свойства вещества в термодинамических условиях литосферы. Киев.: Наукова думка, 1986. 197 с.
- 5. Орлов Л.И., Карпов Е.Н., Топорков В.Г. Петрофизические исследования коллекторов нефти и газа. М.: Недра, 1987. 320 с.
- 6. Элланский М.Н. Петрофизические связи и комплексная интерпретация данных промысловой геофизики. М.: Недра, 1978. 212с.
- 7. Барулин Г.И. Геофизические основы регионального прогноза нефтегазоносности. М.: Недра, 1983. 176 с.
- 8. Ржевский В.В., Новик Г. Я. Основы физики горных пород: учебник для вузов Москва: ЛЕНАНД, 2015 359 с. (Классика инженерной мысли: горное дело).

6.2 Информационное и программное обеспечение

Электронные учебники ТПУ:

- 1. Номоконова Г.Г. Физика горных пород http://e-le.lcg.tpu.ru/public/FGP 0651/index.html
- 2. Ηομοκομοβα Γ.Γ. Πετροφизика http://e-le.lcg.tpu.ru/public/PFP 0611/index.html

Интернет-ресурсы:

- 1. http://www.oilcraft.ru Сайт библиотеки учебников и монографий нефтегазовой сферы
- 2. http://www.slb.ru/sis/Petrophysics/ Петрофизика в GeoFrame
- 3. http://www.yagello.ru/catalog.php?cid=218 Каталог изданий для нефтегазового комплекса: петрофизика
- 4. http://www.izdatgeo.ru/index.php?action=journal&id=1 Журнал «Геология и геофизика»
- 5. http://www.karotazhnik.ru/htmls/ntv karotazhnik.htm Журнал «Каротажник»
- 6. http://vniioeng.mcn.ru/inform/geolog/ Журнал «Геология, геофизика и разработка нефтяных и газовых месторождений»
- 7. http://www.izdatgeo.ru/index.php?action=journal&id=1 Журнал «Геофизика»
- 8. http://www.oil-gas.com.ua/NEW/last.htm Журнал «Нефть и газ»
- 9. http://astropro.ru/science/?p=video&id=464 Сайт фильмов по физике, в том числе раздела «поверхностные явления и свойства»
- 10. <u>http://www.gubkin.ru</u> Сайт Российского государственного университета нефти и газа им. И. М. Губкина.
- 11. <u>http://www.geoinform.ru</u> журнал «Геология нефти и газа»
- 12. <u>http://www.ngtp.ru/</u> Нефтегазовая геология. Теория и практика. Электронное издание ВНИГРИ

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**): Adobe Acrobat Reader DC; Cisco Webex Meetings; Document Foundation LibreOffice; Google Chrome; Microsoft Office 2007 Standard Russian Academic; Zoom Zoom

7. Материально-техническое обеспечение дисциплины Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для

практических и лабораторных занятий:

No	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634028, Томская область, г. Томск, Ленина проспект, 2, строен.5, 422	Комплект учебной мебели на 48 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634028, Томская область, г. Томск, Ленина проспект, 2, строен.5, 408	Комплект учебной мебели на 12 посадочных мест;Стол лабораторный - 1 шт.; Компьютер - 11 шт.; Проектор - 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по специальности 21.05.03 Технология геологической разведки /специализации Геофизические методы исследования скважин (приема 2019 г., очная форма обучения).

Разработчик(и):

Должность	ФИО
Доцент ОГ	Соколов С.В.

Программа одобрена на заседании отделения геологии (Протокол заседания отделения геологии № 12 от 24.06.2019).

Заведующий кафедрой-руководитель отделения геологии на правах кафедры, д.г-м.н., доцент

_/Гусева Н.В./

подпись

Лист изменений рабочей программы дисциплины:

Учеб ный год	Содержание /изменение	Обсуждено на заседании отделения /кафедры (протокол)
2020 / 2021 учебный год	1. Обновлено программное обеспечение. 2. Обновлен состав профессиональных баз данных и информационно-справочных систем. 3. Обновлено содержание разделов дисциплины. 4. Обновлен список литературы, в том числе ссылок ЭБС.	Протокол заседания ОГ №21 от 29.06.2020