МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

YTBEP:	ЖДА	O
Директ	p MII	ΕI
Tovo		Матвеев А.С.
«26»	06	2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ ОЧНАЯ

Моделирование физических процессов и объектов проектирования 13.04.03 Энергетическое машиностроение Направление подготовки/ специальность Проектирование и диагностирование Образовательная программа (направленность (профиль)) энергетических агрегатов Специализация Проектирование и диагностирование энергетических агрегатов Уровень образования высшее образование - магистратура 1 Курс семестр Трудоемкость в кредитах 6 (зачетных единицах) Временной ресурс Виды учебной деятельности Лекции 16 16 Контактная (аудиторная) Практические занятия Лабораторные занятия 32 работа, ч ВСЕГО 64 Самостоятельная работа, ч 152 в т.ч. отдельные виды самостоятельной работы с курсовая работа выделенной промежуточной аттестацией (курсовой проект, курсовая работа) итого, ч 216

Вид промежуточной	Экзамен,	Обеспечивающее	НОЦ
аттестации	диф. зачет	подразделение	И.Н. Бутакова
Заведующий кафедрой - руководитель НОЦ И.Н. Бутакова на правах кафедры		Agus_	Заворин А.С.
Руководитель ООП	A	HO "	Гиль А.В.
Преподаватель		Lysus	Субботин А.Н.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5.4 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код		Индикаторы	достижения компетенций	Составляющие результатов освоения (дескрипторы компетенции)			
компетенции	Наименование компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование		
		и опкал	Формулирует нали и	ОПК(У)- 1.1У1	Ставить цели и инновационные задачи инженерного профиля		
	Способен формулировать цели	И.ОПК(У)- 1.1	Формулирует цели и задачи исследования.	ОПК(У)- 1.131	Современных достижений науки и передовых машиностроительных технологий энергетического профиля		
ОПК(У)-1	и задачи исследования, выявлять приоритеты решения задач,		_	ОПК(У)- 1.2B1	Нахождения нестандартных решений профессиональных задач		
	выбирать критерии оценки	И.ОПК(У)- 1.2	Определяет последовательность решения задач.	ОПК(У)- 1.2У1	Анализировать, искать и вырабатывать компромиссные решения с использованием глубоких фундаментальных и специальных знаний в условиях неопределенности		
				ОПК(У)- 2.1У1	Решать инновационные задачи инженерного профиля		
		И.ОПК(У)- 2.1	Выбирает необходимый метод исследования для решения поставленной задачи	ОПК(У)- 2.131	инженерного профиля Основных методов инновационных инженерных исследований, технических испытаний и сложных экспериментов		
опк(У)-2 современные мето исследования, оценивать и представлять результаты	Способен применять современные методы исследования,	И.ОПК(У)- 2.2	Проводит анализ полученных результатов	ОПК(У)- 2.2В1	Анализа и разработки рекомендации по результатам научных исследований объектов профессиональной деятельности		
	представлять			ОПК(У)- 2.2У1	Формулировать выводы в условиях неоднозначности с применением глубоких теоретических и экспериментальных методов исследований		
			И.ОПК 2.3	И.ОПК(У)- 2.3	Представляет результаты выполненной работы	ОПК(У)- 2.3В1	Оформления, представления и защиты результатов инновационных инженерных исследований, составления практических рекомендаций по их использованию
		И ПКОО 4.1	Разработка проектов тепломеханического оборудования ТЭС, их	ПК(У)- 4.1У1	Выявлять достоинства и недостатки известных технических решений, находить пути устранения недостатков		
		И.ПК(У)-4.1	систем и составных элементов	ПК(У)- 4.131	Современные технологии проектирования конкурентно способных энергетических установок		
ПК(У)-4	Способен проектировать, конструировать и сопровождать на всех этапах жизненного цикла энергетические установки И.ПК(У)-4.			ПК(У)- 4.2В1	Проектирование энергетических установок и узлов с применением профессиональных конструкторских пакетов прикладных программ		
		И.ПК(У)-4.2	Расчет элементов и проектирование узлов энергетических агрегатов	ПК(У)- 4.2У1	Использовать междисциплинарные знания и нормативные документы для определения жизненных циклов энергетического оборудования		
			ПК(У)- 4.231		ПК(У)-	Действующие в отрасли нормативные документы по выбору, расчету и проектированию энергетического оборудования	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Код	од Наименование	
		компетенции
РД 1	Уметь сравнивать и сопоставлять изучаемые явления, оценивать и обобщать их, находить оригинальные решения поставленных задач в рамках своей профессиональной деятельности.	И.ОПК(У)-1.1 И.ОПК(У)-1.2 И.ОПК(У)-2.2
РД 2	Знать методики обработки результатов экспериментальных исследований с применением пакетов прикладных программ.	И.ОПК(У)-1.2 И.ОПК(У)-2.1
РД 3	Уметь использовать методы математического анализа и моделирования при проектировании энергетического оборудования, его автоматизации с применением прикладных программ.	И.ОПК(У)-1.1 И.ОПК(У)-1.2 И.ОПК(У)-2.1 И.ПК(У)-4.1 И.ПК(У)-4.2
РД 4	Владеть опытом обработки результатов измерений основных параметров при экспериментальных исследованиях энергетического оборудования.	И.ПК(У)-7.2 И.ОПК(У)-2.2
РД 5	Владеть опытом использования основных методов, способов и средств получения, хранения, переработки и представления информации при решения инженерных задач для энергетических установок.	И.ОПК(У)-1.2 И.ОПК(У)-2.1 И.ОПК(У)-2.2 И.ОПК(У)-2.3 И.ПК(У)-4.2

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1. Введение в	РД 1, РД 2	Лекции	2
математическое моделирование		Практические занятия	2
		Лабораторные занятия	4
		Самостоятельная работа	24
Раздел (модуль) 2. Методология	РД 1, РД 2,	Лекции	2
построения математических	РД 3	Практические занятия	2
моделей		Лабораторные занятия	4
		Самостоятельная работа	28
Раздел (модуль) 3. Простейшие	РД 1, РД 3,	Лекции	4
модели в теории горения и	РД 4, РД 5	Практические занятия	4
теплообмена		Лабораторные занятия	6
		Самостоятельная работа	30
Раздел (модуль) 4.	РД 1, РД 3,	Лекции	4
Математические модели в	РД 4, РД 5	Практические занятия	4
теории теплообмена		Лабораторные занятия	8
		Самостоятельная работа	32
Раздел (модуль) 5.	РД 1, РД 3,	Лекции	4
Математическое моделирование	РД 4, РД 5	Д 5 Практические занятия 4	
в теории горения		Лабораторные занятия	10

Самостоятельная	работа	38
Cambellanian	paoora	50

Содержание разделов дисциплины:

Раздел 1. Введение в математическое моделирование

Знакомятся с методологией моделирования, с преимуществом перед теоретическим и экспериментальными способами исследования мира. Оценивается роль математического моделирования на современном этапе научно-технического прогресса и в построении информационного общества. Триада «модель — алгоритм — программа».

Темы лекций:

- 1. Методология математического моделирования.
- 2. Развитие методов и подходов математического моделирования в истории человечества.

Темы практических занятий:

1. Особенности граничных условии первого и второго рода.

Названия лабораторных работ:

1. Выполнение тестового и индивидуального задания по применению метода наименьших квадратов при использовании квадратичной зависимости.

Раздел 2. Методология построения математических моделей

Знакомятся с использованием фундаментальных законов природы, вариационных принципов. Особенностями применения аналогий при построении математических моделей. Анализируют иерархический подход к получению моделей. Процессы (этапы) построения математических моделей. Понятие натурного и вычислительного эксперимента.

Темы лекций:

- 1. Способы построения математических моделей.
- 2. Использование фундаментальных законов природы, вариационных принципов.
- 3. Процесс (этапы) построения математических моделей.

Темы практических занятий:

- 1. Иерархические подходы.
- 2. Построение математических моделей.

Названия лабораторных работ:

1. Написание и отладка программы на алгоритмическом языке программирования Паскаль, построение графических зависимостей по полученным численным и заданным экспериментальным данным.

Раздел 3. Простейшие модели в теории горения и теплообмена

Знакомятся с математическими основами обработки данных экспериментальных исследований. С построением аналитических зависимостей по эмпирическим данным, полученным при исследовании простейших моделей поведения объектов изучения. Изучают алгоритмы применения метода наименьших квадратов при использовании линейной, квадратичной, степенной зависимостей.

Темы лекций:

1. Математические основы обработки данных.

- 2. Метод наименьших квадратов.
- 3. Алгоритмы применения метода наименьших квадратов.

Темы практических занятий:

1. Изучение алгоритмов метода наименьших квадрат.

Названия лабораторных работ:

- 1. Выполнение тестового и индивидуального задания по применению метода наименьших квадратов при использовании степенной зависимости.
- 2. Написание и отладка программы на алгоритмическом языке программирования Паскаль, построение графических зависимостей по заданным экспериментальным значениям и полученным теоретическим данным.

Раздел 4. Математические модели в теории теплообмена

Знакомятся с основными принципами и законами теплопередачи — теплопроводность, конвекция, термическое излучение. Дифференциальным уравнением теплопроводности. Изучают его вывод для общего случая, запись в декартовой, цилиндрической, сферической системе координат. Условия однозначности для процессов теплопроводности — физические, геометрические, начальные и граничные условия. Примеры построения математической постановки задачи по ее словесному описанию. Численные методы решения задач теплообмена.

Темы лекций:

- 1. Применение математического моделирования к процессам теплопроводности.
- 2. Уравнение теплопроводности.
- 3. Особенности применения математических методов для построения задач.

Темы практических занятий:

- 1. Применение метода конечных разностей для одномерной нестационарной задачи теплопроводности.
- 2. Построение сеток, получение дискретного аналога исходной дифференциальной задачи.

Названия лабораторных работ:

- 1. Численное моделирование нестационарной теплопроводности на примере тестовой одномерной задачи: формулировка математической модели, написание и отладка паскаль-программы, графическое представление распределения температуры в исследуемой области.
- 2. Численное моделирование задачи одномерной нестационарной теплопроводности для плоского, цилиндрически или сферически симметричного процесса: формулировка индивидуальной математической модели, написание и отладка паскаль-программы, представление полученного решения в виде графической зависимости.

Раздел 5. Математическое моделирование в теории горения

Знакомятся с математическими формулировками законов сохранения массы, импульса и энергии в рамках Лагранжева (траекторного) подхода для описания горения взвешенных частиц твердого и жидкого топлива, многокомпонентной горючей газовой смеси. Физической и математической постановками задач горения угольных частиц и газообразного топлива в камерах сгорания. Изучают методы решения систем обыкновенных дифференциальных уравнений. Методы Эйлера и Рунге-Кутта. Алгоритм их численной реализации на ЭВМ. Математическое моделирование

газодинамических процессов. Математическая модель горения пылеугольного топлива в топочной камере котлоагрегата, газообразной смеси в камере сгорания ГПА. Основные уравнения, их связь с фундаментальными законами. Метод решения математической модели. Краткая характеристика пакета прикладных программ ANSYS Fluent, реализующего рассматриваемую математическую модель на ЭВМ.

Темы лекший:

- 1. Законы сохранения массы, импульса, и энергии.
- 2. Лагранжев и Эйлеровы подходы.
- 3. Моделирование газодинамических процессов.
- 4. Модели турбулентности.
- 5. Особенности задания граничных условий для процессов горения.

Темы практических занятий:

- 1. Проработка физико-математической постановки задачи.
- 2. Проведение верификационных расчетов.
- 3. Задание начальных и граничных условий.

Названия лабораторных работ:

- 1. Применение метода Эйлера или Рунге-Кутта для решения системы обыкновенных дифференциальных уравнений (ОДУ).
- 2. Численное решение задачи о горении частицы/смеси в ограниченном объеме.
- 3. Численное исследование определенных процессов в прямоточной камере парового котла при заданных условиях и параметрах.
- 4. Изучение пакета прикладных программ ANSYS Fluent.

Тематика курсовых работ:

- 1. Численное моделирование процессов горения в камере сгорания ГТУ-16 МВт.
- 2. Численное моделирование процессов горения в камере сгорания ГТУ-32МВт.
- 3. Численное моделирование процессов горения в топочной камере котла Е-220-9,8-550.
- 4. Численное моделирование процессов горения в топочной камере котла Е-160-9,6-545.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Подготовка к оценивающим мероприятиям;

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

1. Советов, Борис Яковлевич. Моделирование систем: учебник [Электронный ресурс] / Б. Я. Советов, С. А. Яковлев; Санкт-Петербургский государственный электротехнический университет (СПбГЭТУ). – 7-е изд.. – Мультимедиа ресурсы (10

- директорий; 100 файлов; 740MB). Москва: Юрайт, 2014. (http://www.lib.tpu.ru/fulltext2/m/2014/FN/fn-85.pdf)
- 2. <u>Гайдукова, Ольга Сергеевна.</u> Численное моделирование физико-химических процессов: учебное пособие [Электронный ресурс] / О. С. Гайдукова, Д. О. Глушков; Национальный исследовательский Томский политехнический университет. 1 компьютерный файл (pdf; 3.1 MB). Томск: Изд-во "АлКом", 2020. (https://www.lib.tpu.ru/fulltext2/m/2020/m057.pdf)
- 3. Гоц, Александр Николаевич. Численные методы расчета в энергомашиностроении : учебное пособие для вузов / А. Н. Гоц. 3-е изд., испр. и доп.. Москва: Инфра-М, 2015. 352 с.: ил. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C287680)
- 4. Гулин, Алексей Владимирович. Введение в численные методы в задачах и упражнениях : учебное пособие / А. В. Гулин, О. С. Мажорова, В. А. Морозова; Московский государственный университет им. М. В. Ломоносова (МГУ), Факультет вычислительной математики и кибернетики. Москва: Инфра-М Аргамак-Медиа, 2014. 368 с.: ил. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C280489)

Дополнительная литература

- 1. Вабищевич, Петр Николаевич. Численные методы. Вычислительный практикум / П. Н. Вабищевич. Изд. стер.. Москва: Либроком, 2014. 319 с. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C285814)
- 2. Калиткин, Николай Николаевич. Численные методы : учебное пособие / Н. Н. Калиткин; под ред. А. А. Самарского. 2-е изд., испр.. Санкт-Петербург: БХВ-Петербург, 2014. 586 с.: ил. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C266998)

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. HTB https://www.lib.tpu.ru/html/irs-and-pdb
- 2. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 3. Электронно-библиотечная система «ZNANIUM.COM» https://new.znanium.com/
- 4. Электронно-библиотечная система «Юрайт» https://urait.ru/

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного** программного обеспечения **ТПУ**):

- 1. Microsoft Office 2007 Standart Russian Academic; Microsoft Office 2013 Standart Russian Academic;
- 2. Document Foundation LibreOffice;
- 3. Cisco Webex Meetings;
- 4. Zoom Zoom;
- 5. Matlab, Mathcad
- 6. Autodesk AutoCAD;
- 7. Autodesk Inventor:
- 8. ANSYS.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование:

Nº	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения	Доска аудиторная поворотная - 1 шт.; Комплект учебной мебели
	учебных занятий всех типов,	на 48 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.

	T	
	курсового проектирования,	
	консультаций, текущего	
	контроля и промежуточной	
	аттестации (учебная	
	лаборатория)	
	634034 г. Томская область,	
	Томск, пр. Ленина 30, а, учебный	
	корпус №4, аудитория 401	
2.	Аудитория для проведения	Котел Vitodent 100-W 26 кВт, одноконтурный с блоком
	учебных занятий всех типов,	управления и арматурой - 1 шт.; Стенд имитационный системы
	курсового проектирования,	отопления и ГВС с напольным котлом - 1 шт.; Стенд
	консультаций, текущего	имитационный системы отопления и ГВС с навесным котлом - 1
	контроля и промежуточной	шт.;
	аттестации (учебная	Доска аудиторная поворотная - 1 шт.; Комплект учебной мебели
	лаборатория)	на 48 посадочных мест; Зонт вытяжной - 2 шт.;
	634034 г. Томская область,	Компьютер - 2 шт.; Проектор - 2 шт.
		Компьютер - 2 шт., проектор - 2 шт.
	Томск, пр. Ленина 30, а, учебный	
	корпус №4, аудитория 403	T . 270 1 H
3.	Аудитория для проведения	Анализатор дымовых газов Testo350 - 1 шт.; Доска аудиторная
	учебных занятий всех типов,	поворотная - 1 шт.;Стол письменный - 1 шт.;Комплект учебной
	курсового проектирования,	мебели на 52 посадочных мест; Компьютер - 1 шт.; Проектор - 1
	консультаций, текущего	шт.
	контроля и промежуточной	
	аттестации (учебная	
	лаборатория)	
	634034 г. Томская область,	
	Томск, пр. Ленина 30, а, учебный	
	корпус №4, аудитория 406	
4.	Аудитория для проведения	Доска аудиторная настенная - 1 шт.; Шкаф для одежды - 1 шт.;
	учебных занятий всех типов,	Тумба стационарная - 1 шт.; Тумба навесная - 1 шт.; Стол
	курсового проектирования,	письменный - 9 шт.; Комплект учебной мебели на 14
	консультаций, текущего	посадочных мест; Доска аудиторная поворотная - 1 шт.;
	контроля и промежуточной	Компьютер - 12 шт.; Проектор - 1 шт.
	аттестации (учебная	1 / 1 1
	лаборатория)	
	634034 г. Томская область,	
	Томск, пр. Ленина 30, а, учебный	
	корпус №4, аудитория 224б	
	корпус лен, аудитория 2240	

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 13.04.03 Энергетическое машиностроение (приема 2020 г., очная форма обучения).

Разработчик(и):

()·	
Должность	ФИО
Профессор	Субботин А.Н.

Программа одобрена на заседании Научно-образовательного центра И.Н. Бутакова (протокол от 26 июня 2020 г. № 44).

Заведующий кафедрой -руководитель НОЦ 1	И.Н. Бутакова	
на правах кафедры, д.т.н, профессор		/Заворин А.С.
	подпись	

	курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, пр. Ленина 30, а, учебный корпус №4, аудитория 401	
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, пр. Ленина 30, а, учебный корпус №4, аудитория 403	Котел Vitodent 100-W 26 кВт, одноконтурный с блоком управления и арматурой - 1 шт.; Стенд имитационный системы отопления и ГВС с напольным котлом - 1 шт.; Стенд имитационный системы отопления и ГВС с навесным котлом - 1 шт.; Доска аудиторная поворотная - 1 шт.; Комплект учебной мебели на 48 посадочных мест; Зонт вытяжной - 2 шт.; Компьютер - 2 шт.; Проектор - 2 шт.
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, пр. Ленина 30, а, учебный корпус №4, аудитория 406	Анализатор дымовых газов Testo350 - 1 шт.; Доска аудиторная поворотная - 1 шт.;Стол письменный - 1 шт.;Комплект учебной мебели на 52 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.
4.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, пр. Ленина 30, а, учебный корпус №4, аудитория 224б	Доска аудиторная настенная - 1 шт.; Шкаф для одежды - 1 шт.; Тумба стационарная - 1 шт.; Тумба навесная - 1 шт.; Стол письменный - 9 шт.; Комплект учебной мебели на 14 посадочных мест; Доска аудиторная поворотная - 1 шт.; Компьютер - 12 шт.; Проектор - 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 13.04.03 Энергетическое машиностроение (приема 2020 г., очная форма обучения).

Разработчик(и):

Должность ФИО			
Профессор	Level !	Субботин А.Н.	

Программа одобрена на заседании Научно-образовательного центра И.Н. Бутакова (протокол от 26 июня 2020 г. № 44).

Заведующий кафедрой -руководитель НОЦ И.Н. Бутакова на правах кафедры, д.т.н, профессор /Заворин А.С./