

APPROVED BY

Director of Nuclear Science & Engineering School / Oleg Yu. Dolmatov "25 "06 2020

Course Name: Nuclear Reactor Design Project

Field of Study: Nuclear Physics and Technology

Programme name: Nuclear Science and Technology

Specialization: Nuclear Power Engineering

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: semester 3, year 2

ECTS: 4

Total Hours: 144

Contact Hours: 64

- Lectures: 32
- Practical experience: 32

Self-study: 80 Assessment: Graded credit-test, credit test Division: Nuclear Fuel Cycle

> Vera V. Verkhoturova / Sergey N. Timchenko

Director of Programme Instructor

Course name: Nuclear Reactor Design Project

Course Overview

	The objective of the course is to develop students' theoretical knowledge and
Course	practical skills, which are necessary to conduct professional activity involving
Objectives	the usage of calculation techniques of reactor core and biological shields for
	nuclear power plants.
Learning Outcomes	 nuclear power plants. Upon completion of the course, a graduate will obtain the knowledge of: fundamentals of nuclear and neutron physics, composition and characteristics of nuclei, the law and characteristics of radioactive decay, theoretical foundations of nuclear reactors and their characteristics; features of neutron cycle in a nuclear reactor, the concept of the effective neutron multiplication factor, the criticality conditions; processes of fuel burnout and reproduction in various fuel cycles; physics of transients in nuclear reactors; existing designs of nuclear reactors in general and their structural elements; basic types, classes and groups of materials, their compositions and properties (nuclear fuel, coolants, retarders, structural materials, protection materials); laws of thermodynamics, cycles of steam turbine and gas turbine installations, energy balance of nuclear power plants, efficiency; thermohydraulic processes in nuclear reactors and power plants, methods of hydraulic profiling of coolant flow, non-stationary processes in transient and emergency modes; basic laws of natural science disciplines; sources of ionizing radiation in nuclear power plants; beaking the influence of ionizing radiation and complex temperature fields; math characteristics of subcritical, critical and supercritical multiplying systems; behavior of various materials of nuclear reactor according to the testimony of instrumentation; methods for determining the effectiveness of regulatory authorities and management and protection systems; methods for determining the state of the reactor according to the testimony of instrumentation; methods for determining the state of the reactor
	requirements;

- methods for determining the effectiveness of shim rods and control and
protection systems; methods of calibration of shim rods; methods of
control over shim rods position; methods for determining the state of
the reactor according to the testimony of instrumentation;
- comparative assessment of the environmental, medical, social and
economic aspects of the use of various energy sources;
- fundamentals of technology and the environmental consequences of
uranium mining, uranium enrichment, fuel fabrication.
Upon completion of the course, graduates are also expected to develop the
following skills:
 to calculate the basic physical characteristics of nuclear reactors;
- to determine the critical characteristics (position, concentration, etc.)
of the regulating bodies at any time during the reactor operation;
- to calculate reactor poisoning, slagging, burnout, and accumulation of
fuel isotopes;
- to apply calculation methods accompanying the process of reactor
aesign;
- to apply the acquired knowledge for determining the optimal
NDD and to argue the decisions taken:
compose equations characterizing isothermal isobaria isochoria
- compose equations characterizing isothermal, isobaric, isochoric, adiabatic and polytropic processes:
 to determine the specific volume enthalpy internal energy of working
bodies used in the thermohydraulic calculation of nuclear reactors: to
determine the thermal efficiency of thermodynamic cycles:
 to use basic laws of natural science in professional activity;
- to apply methods of modeling, calculation and experimental research
in the development of new nuclear reactors and power plants;
– to apply regularities of the weakening of ionizing radiation in matter;
 to classify nuclear reactor safety systems;
- to analyze design decisions of the existing power installations and the
ones under construction;
- to determine the state of the reactor (multiplying system) according to
the reactor instrumentation readings;
- to determine and use differential and integral characteristics of reactor
regulators;
- to draw up a schedule for the physical start-up of the reactor and for the
- to assess nuclear and radiation safety, its impact on the environment:
- to carry out an approximate or estimated engineering calculation of
equipment and station indicators.
 to use methods of engineering calculations of processes in nuclear.
reactors and power plants:
- to analyze and interpret the flow of fast and slow neutron-physical
processes in the reactor;
- to create mathematical models of processes for carrying out complex
neutron-physical, thermal-hydraulic, strength calculations, study of
safety indicators;
- to consider specific characteristics of nuclear power engineering in
raising the public awareness of nuclear energy development;

	 to develop plans for calculation and experimental research.
	Upon completion of the course, graduates should acquire the practical
	experience in:
	– applying methods for determining neutron effective cross sections:
	- drawing up regulatory requirements for the physical reactor start-up
	- drawing up regulatory requirements for the physical reactor start-up and for the reactor operating at a required power level:
	and for the reactor operating at a required power rever,
	- calculating reactor reactivity change due to poisoning, slagging,
	burnout, reproduction, temperature effects of nuclear fuel;
	– using obtained knowledge in the process of design under conditions
	when general standards cannot be applied;
	– monitoring and interpreting the thermohydraulic parameters of the core
	of operating and shut down reactors;
	- carrying out experiments to perform thermohydraulic calculations of
	reactors:
	 combining results of thermal and hydraulic calculations with physical
	strength and economical design to justify the parameters of a nuclear
	installation its thermal and technical reliability:
	- assessment of the consequences of using energy-producing
	technologies
	- execution of engineering calculations for the main types of professional
	tasks;
	– using methods for calculating biological protection and dose rates,
	radiation safety standards;
	 making analysis of existing nuclear power safety:
	 solving direct and inverse problems of reactor control:
	colculating afficiency and levout of the reactor control and protection
	- calculating efficiency and layout of the feactor control and protection
	system;
	- starting-up and controlling the parameters of a research nuclear reactor;
	 controlling parameters of the neutron field when moving shim rods;
	– plotting charts, graphs, drawings, diagrams, nomograms, and other
	engineering visuals;
	- applying obtained knowledge for solving specific engineering tasks,
	for comparative assessments in standard and specific situations;
	- calculating the efficiency and layout of the reactor control and
	protection system
	controlling parameters of the neutron field in conditions of shim rods
	movement:
	implementation of research and development results.
	- implementation of research and development results;
	- developing computational programmes for calculating parameters and
	technological processes with the use of computer technologies.
	The target course is taught using a variety of teaching forms such as:
	– 16 lectures;
	– 16 practical experiences;
	– 2 colloquiums;
Course Outline	- 1 team project.
	Within the framework of the course, students study the following sections:
	Section 1 Neutronic processes
	Calculation task is devoted to obtaining practical skills on the following
	Calculation task is devoted to obtaining practical skills on the following

	- Unit cell of the reactor.
	- Neutronic properties of the reactor core.
	- Temperature and power effects of reactivity.
	Section 2. Methods of nuclear reactor calculation
	Calculation task is devoted to obtaining practical skills on the following
	- Energy release of reactor core.
	– Nuclear reactor campaign.
	– Fuel burnup.
	Each section includes several lectures and practical experiences. The course
	ends with a credit-test.
	Learners' self-study involves performance of reports based on calculation
	tasks, preparation for colloquiums and midterm tests.
	Students perform 6 calculating tasks during the course of study. Each
	calculating task ends with a report, which must be presented in paper and formatted according to the TDL quideling. The number of pages in the report
	(avagent for the title page and the list of references) should be at least 2 and not
	(except for the nate page and the list of references) should be at least 5 and not more than 6. The maximum score for a report is 10. The number of points
	received by a student for each report is determined according to the system of
	knowledge assessment
	<i>Final assessment</i> is performed in an oral form using a credit-test paper. Each
	naper includes three questions or tasks. Time for preparation is 30 minutes
	The maximum score is 20 ^o the minimum score is 12 ^o Total score is formed on
	the basis of three criteria:
	- Knowledge of professional subject (0-2 scores)
	- Logical and well-structured answer (0-8 scores)
	- Correctness and completeness of answers (0-10 scores)
	correctiess and completeness of answers (o to scores).
	1. Nuclear Physics.
Prerequisites (if	2. Special chapters of Advanced Mathematics.
available)	3. Materials of Nuclear Installations.
	4. Reactor Physics.
	The target course consists of two sections.
	Section 1. Neutronic processes
	Nuclear reactor. Chain fission reaction. Main parameters of the chain fission
	reaction. Coefficient of neutron multiplication. Physical features of nuclear
	reactor. Influence of structural features on the physical parameters of reactor.
Course Structure	Role of neutronic calculations in the design of nuclear reactors. Reactor core.
	Fuel rods. Reflector. Nuclear reactor structure. Features of reactor. Physical
	design. Choice of the type of reactor design. Fuel cycle. Consumption of natural
	uranium. Potential dangers of nuclear fuel. Nuclear fission. Neutrons. Delayed
	neutrons. Energy of fission. Cross sections for the interaction of neutrons with
	flux. Data of nuclear interactions. Neutrons lookage Slowing down and
	diffusion of neutrons. Moderators and neutron reflectors. Chain reaction
	Neutron cycle. Critical parameters of the reactor. General scheme for physical
	calculations of the reactor Neutrons spectrum Multigroup theories Features
	of the single-group approximation. The single-group equation and its solution
	Border conditions. Calculation of the reactor in the single-group approximation
	in simple cases. Multigroup approximation of the theory of critical parameters
	Section 2. Methods of nuclear reactor calculation

	Method of separation of variables. Finite cylindrical reactor. Multi-zone
	cylindrical reactor. Cylindrical reactor with a central shim rod. An example of
	a single-group reactor calculation.
	Basic coefficients of the diffusion equation in homogeneous media.
	Coefficients of the diffusion equation in a heterogeneous reactor. Cell model of
	a heterogeneous reactor. Distribution of the thermal neutron flux density over
	the cell of a heterogeneous reactor. Boltzmann equation. Possibilities for its
	simplification. Finite difference method. Method of spherical harmonics.
	Method of discrete ordinates. Probabilistic methods. The probability method of
	the first collisions. The Monte Carlo method. Excess reactivity and operational
	reactivity margin. Reactivity balance of the reactor. The components of the
	balance of reactivity. Tasks for physical calculations. Features of physical
	calculations in reactors of various types. Calculations of elementary cells of
	reactors. Calculations of the reactor. Calculations of fuel burnup. Calculations
	of shim rods worth. Main characteristics of the core. Causes of uniformity
	energy release distribution in the core. Equalization of energy release in the
	core. Selection and optimization of the initial fuel loading.
Facilities and	Lecture hall with multimedia equipment: Tomsk, Lenin ave. 2/4, building 11,
Equipment	room 303.
	In accordance with TPU rating system we use:
	-Current assessment, which is performed on a regular basis during the
	semester by scoring the quality of mastering of theoretical material and the
	results of practical activities (calculating task, colloquium). Max score for
	current assessment is 100, min – 55.
	Current assessment involves defense of reports based on calculation tasks and
	colloquiums. Reports on calculation tasks results must be presented in paper
Grading Policy	and formatted according to the TPU guidelines. The number of pages in the
	report (except for the title page and the list of references) should be at least 5
	and not more than 10. The maximum score for a report is 10. The number of
	points received by a student for each task is determined according to the
	system of knowledge assessment. Colloquiums are carried out in a written
	form using a set of questions or tasks. Each set includes two questions or tasks.
	Time for preparation is 60 minutes. The maximum score is 10; the minimum
	score is 4.
Course policy	Attendance at lectures and practical experience is compulsory.
Toophing Aids	Compulsory reading.
and Resources	1 Oka V Nuclear Reactor Design / V Oka Tokyo · Springer 2014 327
and Resources	n Tever: Suevrnouuu u // SpringerLink URL:
	p. – recer. sheriponnin // springerLink. – OKL. https://link.springer.com/book/10.1007/978-4-431-54898-0 ($\pi a \pi a$
	обращения: 20.09.2020) – Режим поступа: из корпоратирной сети ТПУ
	2 Hoffelner W Materials for Nuclear Plants From Safe Design to Residual
	Life Assessments / W Hoffelner – New York : Springer 2013 – 477 p –
	Текст: электронный // Springerlink _ UDI.
	https://link.springer.com/book/10.1007/978-1-4471-2915-8 (дата
	обращения: 20.09.2020) — Режим поступа: из корпоративной сети ТПV
	3 Nuclear Thermal Hydraulics / H Akimoto V Anoda T Kazuvuki fond
	others] - Tokyo · Springer 2009 - 201n - Tever Shevroulu u //
	SpringerLink = URL: https://link.springer.com/book/10.1007/078_4_431_
	55603-9 ($\pi a \pi a$ of $n a \pi a e \pi a e \pi a$ of $n a \pi a e \pi a e \pi a$ of $n a \pi a e \pi a e \pi a$
	корпоративной сети ТПV

	4. Fast Reactor System Design / by editor N. Kasahara Tokyo : Springer,
	2017 – 298 р. Текст: электронный // SpringerLink. – URL:
	https://link.springer.com/book/10.1007/978-981-10-2821-2 (дата
	обрашения: 20.09.2020). – Режим лоступа: из корпоративной сети ТПУ.
	5 Marguet S The Physics of Nuclear Reactors / S Marguet — Cham :
	Springer International Publishing $\Delta G = 2017 - 1445$ n - Tever:
	Springer international rubining AO, 2017 . — 1445 p. – 1000.
	электронный // SpringerLink. – UKL.
	<u>nttps://ink.springer.com/book/10.100//978-3-319-39360-3</u> (Дата
	обращения: 20.09.2020). – Режим доступа: из корпоративной сети 1119.
	Additional reading:
	1. Fast Reactor System Design / by editor N. Kasahara. – Tokyo : Springer,
	2017 – 298 р. Текст: электронный // SpringerLink. – URL:
	<u>https://link.springer.com/book/10.1007/978-981-10-2821-2</u> (дата
	обращения: 20.09.2020). – Режим доступа: из корпоративной сети ТПУ.
	2. Handbook of Nuclear Engineering. With Figures and Tables. V. 1: Nuclear
	Engineering Fundamentals / by editor D. G. Cacuci. – Karlsruhe : Springer.
	2010 — 3701 р - Текст: электронный // SpringerLink — URL:
	https://link.springer.com/referencework/10.1007/978-0-387-98149-9 (дата
	обращения: 20.00.2020) Режим поступа: на корпоративной сети ТПУ
	обращения. 20.09.2020). – Гежим доступа. из корпоративной сети 1115.
	Sergey N. Timchenko, Associate professor, Nuclear Fuel Cycle Division,
	School of Nuclear Science & Engineering, TPU, tel.: +7 (3822) 701-777 (ext.
Instructor	2368), e-mail: <u>timsn@tpu.ru</u> , personal site:
	https://portal.tpu.ru/SHARED/t/TIMSN/eng