

APPROVED BY

Director of Nuclear Science & Engineering School TOleg Yu. Dolmatov " 06 2020

Course Name: Nuclear Physics

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Academic profile: Nuclear Power Engineering

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: semester 1, year 1

ECTS: 4

Total Hours: 144

Contact Hours: 48

- Lectures: 16
- Labs: 16

• Practical experience: 16

Self-study: 96

Assessment: exam

Division: Nuclear Fuel Cycle

Director of Programme

/Vera V. Verkhoturova / Andrey O. Semenov

Course name: Nuclear Physics

Course Overview

Course Objectives	The objective of the course is to develop knowledge and skills to perform professional activity in a variety of forms including research and technological activities in the fields related to nuclear power engineering.
Learning Outcomes	 Upon completion of the course, a graduate is expected to acquire the knowledge of: main ways of interaction of neutron radiation, gamma-ray fluxes, light and heavy charged particles with matter; basic concepts and terms related to nuclear physics; theory of nuclei structure and their characteristics; types and laws of radioactive decays; mechanisms of nuclear reactions and their types; Graduates are also expected to develop the following skills: to carry out calculations of the interaction of ionizing radiation with various materials and substances; to predict nuclear transformations based on radioactive series; to interpret characteristics and parameters of nuclei in accordance with the basic models of nuclei; to apply knowledge of modern communicative technologies in a foreign language in the field of nuclear physics; Graduates should acquire the practical experimence in: use of mathematical analysis and modeling; theoretical study of the processes of interaction of flows of ionizing radiation with matter; carrying out evaluative and engineering calculations of the parameters of nuclear reactions; application of methods to analyze nuclear transformations of substances due to their decays, and interpretation of the obtained results.
Course Outline	 The course is taught using a variety of teaching forms, including lectures, practical experience and learners' self-study. The course includes the following obligatory components: 8 lectures; 8 practical experiences; 2 cycles of laboratory works; 3 tests (in a written form); 2 colloquiums. Main sections of the course are as follows: Introduction Static properties of atomic nuclei Models of nuclei

	– Radioactivity
	 Fission and fusion of nucleus
	 Interaction of radiation with matter
	– Nuclear reactions.
	The students will achieve learning objectives of the course after a series of
	lectures on nucleus and its structure, nature and laws of radioactivity, fission
	and fusion, interaction of radiation with matter and nuclear reactions. Students
	will apply obtained knowledge at practical classes to solve different problems
	and at labs developing professional and soft skills.
	Practical training, tasks with theoretical questions and exercises have been
	developed for each course topic. Students will do a part of practical work in the
	classroom, whereas another part of practical work will be done individually as a
	self-study work.
	Lab defense is assessed with the score of 5 points: I correct answer on question
	gives 1 score scores for the report defense. Four labs must be done within the
	The automate assessment allows revealing the quality of learners most ring the
	The current assessment allows revealing the quanty of fearners mastering the
	should be done in writing during the semaster 2 tests are planned for the
	should be done in writing during the semester. 5 tests are plained for the semester. The structure of the test includes 2 test questions 3 test exercises
	Each test question is assessed with two points test every $= 1$ score. The
	whole test is assessed with 7 points
	In order to assess the current level of knowledge it is supposed to conduct 2
	colloquiums in the form of an oral interview. It is necessary to answer on 5
	theoretical questions based on the materials of the relevant sections of the
	discipline. The correct answer to this question is estimated at 2 points. The
	maximum possible number of points for one colloquium is 10 points.
	The exam is a final assessment form. The exam purpose is to reveal developed
	learning outcomes and to determine the degree of correspondence of
	demonstrated learning outcomes to those expected in the program. A student is
	admitted to the exam on condition that all the tests are passed, all laboratory
	works are defended and the total score achieved is not less than 44.
	The structure of an exam paper includes two questions. Each question is given
	10 points. The maximum score for the exam is 20. The exam is oral: a student
	answers the lecturer's questions and presents ways of the problem solution.
	Additional questions and tasks can be provided by a lecturer at the exam. A
	student must score at least 10 points to pass an exam.
Prerequisites	There are no special prerequisites to study this course.
(if available)	The second metal is divided into second sections. Each section consists of
	The course material is divided into seven sections. Each section consists of
	Section 1. Introduction
	As a result of mastering the section, the student will know about the role of
	nuclear physics in the modern world the connection of the course "Nuclear
Course	Physics" with other disciplines of the educational program Nuclear Power
Structure	Engineering Within the section the student will also have an idea of the forces
	and interactions acting on atomic scales, the units of measure used for the
	magnitudes of the microcosm.
	Section 2. Static properties of atomic nuclei
	As a result of mastering the section, a student will know about a series of basic

	properties of atomic nuclei, general models of nucleus and nuclear forces acted on nuclear scales.
	Section 3. Models of nuclei
	As a result of mastering the section, a student will know about the different
	models of atomic nuclei.
	Section 4. Radioactivity
	As a result of mastering the section, a student will know about radioactivity and
	basic laws of radioactive decay, types of radioactivity, measurement units of
	radioactivity, devices and methods for measuring radiation detection and
	measuring radioactivity. In addition, a student will be able to calculate main
	characteristics of decay reactions.
	Section 5. Fission and fusion of nucleus
	As a result of mastering the section, a student will know about main reactions in
	the area of nuclear power engineering, conditions for reactions behavior for
	ission and fusion, tasks and problems of nuclear power engineering. In addition, a student will be able to calculate main abarratoristics of fission and
	fusion reactions
	Section 6 Interaction of radiation with matter
	As a result of mastering the section, a student will know specifics of ionizing
	radiation, principles of radiation interaction with matter, difference in
	interaction of light and heavy particles with matter. In addition, a student will
	be able to calculate main characteristics of ionizing radiation interaction with
	matter and a student will have practice in determining the characteristics of
	radioactive isotopes.
	Section 7. Nuclear reactions
	As a result of mastering the section, a student will know about different types of
	nuclear reactions, laws and behavior of nuclear reactions, specifics of some
	nuclear reactions. In addition, a student will be able to calculate nuclear
	In the course, students will have four labs, three tests and one final test in the
	form of exam.
	1. Lecture rooms with multimedia equipment (projector, PC): 634050, Lenina
Facilities and Equipment	Ave., building 10, room 340, room 228.
	2. Room for practical experience with PC: 634050, Lenina Ave., building 10,
	room 248.
	3. Laboratory of nuclear physics: 634050, Lenina Ave., building 10, room
	In accordance with TPU assessment system we use:
Grading Policy	- Current assessment which is performed on a regular basis during the
	semester by scoring the quality of mastering the theoretical material and
	the results of practical activities (tests, tasks, problem solving). Max
	score for current assessment is 80 points.
	- Course final assessment (exam) is performed at the end of the semester.
	Max score for course final assessment is 20 points.
	The final score is determined by summing the scores of the current assessment
	during the semester and exam score at the end of the semester. Maximum
Course Policy	overall score corresponds to 100 points, min pass score is 55 points.
	Class attendance will be taken into consideration when evaluating students'
	participation in the course. Students are expected to be actively engaged in class
	uiscussions on the assigned reading materials. An classes are obligatory to visit.

	Medical allowance to work with radiation is required. Students should pass
	briefing about electrical, work and radiation safety in laboratories of Nuclear
	Fuel Cycle Division.
Teaching Aids	Compulsory reading:
and Resources	1. Kamal, A. Nuclear Physics / A. Kamal. — Berlin : Springer-Verlag,
	2014. — 612 р. – Текст: электронный // SpringerLink. – URL:
	<u>https://link.springer.com/book/10.1007/978-3-642-38655-8</u> (дата
	обращения: 20.09.2020). – Режим доступа: из корпоративной сети
	ТПУ.
	2. Takigawa N. Fundamentals of Nuclear Physics / N. Takigawa K.
	Washiyama. — Tokyo : Springer, 2017. — 269 р. – Текст: электронный
	// SpringerLink. – URL: <u>https://link.springer.com/book/10.1007/978-4-</u>
	<u>431-55378-6</u> (дата обращения: 20.09.2020). – Режим доступа: из
	корпоративной сети ППУ.
	3. Marguet, S. The Physics of Nuclear Reactors / S. Marguet. — Cham :
	Springer International Publishing AG, 2017. — 1445 p. – Tekct:
	электронный // SpringerLink. – URL:
	<u>https://link.springer.com/book/10.100//9/8-3-319-59560-3</u> (дата
	обращения: 20.09.2020). – Режим доступа: из корпоративной сети
	Additional reading:
	1 Saha G B Physics and Radiobiology of Nuclear Medicine / G B Saha
	— New York : Springer Science 2013 — 328 c. – Текст: электронный
	// SpringerLink _ https://link.springer.com/book/10.1007/978-1-4614-
	4012-3 (дата обращения: 20.09.2020) — Режим доступа: из
	корпоративной сети ТПУ
	2. Greiner W. Nuclear Physics: Present and Future/ W. Greiner. — Cham :
	Springer International Publishing, 2015. — 309 c. — – Текст:
	электронный // SpringerLink. –
	https://link.springer.com/book/10.1007/978-3-319-10199-6 (дата
	обращения: 20.09.2020). – Режим доступа: из корпоративной сети
	ТПУ.
	Semenov Andrey Olegovich, Senior lecturer, Nuclear Fuel Cycle Division,
	Nuclear Science & Engineering School, TPU, +7 (3822) 701-778 (ext. 2330), e-
Instructor	mail: <u>semenov_ao@tpu.ru</u> , Personal page:
	https://portal.tpu.ru/SHARED/s/SEMENOV_AO/eng