

APPROVED BY Director of Nuclear Science & Engineering School Oct / Oleg Yu. Dolmatov "25" 06 2020

Course Name: Quality Assurance for Radiation Therapy

Field of Study: 14.04.02 Nuclear Physics and Technologies

Programme name: Nuclear Science and Technology

Academic profile: Nuclear Medicine

Level of Study: Master Degree Programme

Year of admission: 2019

Semester, year: semester 3, year 2

ECTS: 6

Total Hours: 216

Contact Hours: 112

- Lectures: 32
- **Practical experience:** 32
- Laboratory experience: 48

Self-study: 104

Assessment: Credit-test, term project

Division: Nuclear Fuel Cycle

	45	
Director of Programme		/Vera V. Verkhoturova
Instructor	Elseep	_/Evgeniia S. Sukhikh

Course name: Quality assurance for radiation therapy

Course Overvie	ew
Course Objectives	The objectives of " Quality Assurance for Radiation Therapy " course include the development of students' knowledge and ideas of modern methods, algorithms and procedures of Quality assurance (QA) used for calculation/simulation of the radiation dose distribution in patients during radiation therapy (RT). The clinical aspects of QA are given for the major malignancies which medical physicists will deal during their career. Students will learn to find the solution of research and applied problems connected with QA for radiotherapy, diagnostic, nuclear medicine and dosimetric equipment. Special attention during the course is given to practical skills of the application of methods of QA for calculation of dose distribution in the patient's body generated by various sources ionizing radiation and dose delivery techniques; to principles of control levels calculating for tumour and damage to healthy tissues and organs at risk.
Learning Outcomes	 Upon completion of the course, a graduate will obtain the knowledge of: physical and radiobiological basics of QA procedures for the radiotherapy and the treatment planning, which include algorithms, treatment planning principles, calculation and simulation of the dose distribution main documents of the departments of QA procedures for radiotherapy and diagnostic, nuclear medicine that deals with the treatment planning main international protocols of QA procedures for the treatment planning procedures and different aspects main recommendation of national and international standards and protocols of QA procedures with respect to the equipment of radiotherapy departments. Upon completion of the course, graduates are expected to develop the following skills: To analyze and compare international protocols of QA for the treatment planning and treatment procedures. To use special software of QA for the treatment planning – treatment planning systems To develop the QA procedures of treatment plan for the particular patient following the treatment prescription Upon completion of the course, graduates should acquire the practical experience in: Comparison and analysis of the international protocol of QA for the of the treatment planning and treatment procedures Development the QA procedures of treatment plan for the particular patient following the treatment procedures
Course Outline	 The training course is delivered through the following teaching modes: 16 lectures; 16 practical experiences; 24 laboratory experiences; term project. The course consists of 5 sections, which are given below.

Section 1. Introduction. Quality Assurance Basics in Radiation Therapy
Section 2. Quality assurance of radiotherapy and dosimetry equipment
Section 3. Quality assurance of dosimetric planning systems
Section 4. Quality Assurance in Brachytherapy
Section 5. Quality assurance of special equipment for radiotherapy and
individual exposure plans. Features of monitoring the position of the patient
during treatment
Each section includes several lectures, practical and laboratory experiences
Laboratory experiences are simed to obtaining practical skills in the application of
matheda of quality assumption for calculation of the doce distribution in patient's
ineulous of quality assurance for calculation of the dose distribution in patients
body from various sources and technical delivery of ionizing radiation
(conventional RT, ortovoltage radiotherapy, 3D conformal radiotherapy (3DCRT),
electron RT, brachytherapy, intensity modulated radiotherapy (IMRT\VMAT) for
stereotactic radiotherapy and radiosurgery (SBRT/SRS)), the principles of
calculating the level of control over the tumor and damage to healthy tissues.
The training course finishes with a credit test and requires obligatory completion
and defense of a term project.
As part of the study, the course provides 12 individual home assignments for
students' self-study. Individual homework consists in compiling the necessary
technical and dosimetric parameters of the equipment for quality assurance (ΩA)
depending on the types of radiation therapy that will be performed. The list of
depending on the types of radiation therapy that will be performed. The list of
equipment for performing any type of fautation therapy includes. fautometapy
equipment (accelerators, gamma apparatus), treatment planning system (IPS),
dosimetric equipment, immobilization devices. A set of types of radiation therapy
is individual for each student.
The term project includes the following a set of types of radiation therapy:
1. Conventional RT, interstitial and intracavitory brachytherapy, ortovoltage
radiotherapy.
2.3D conformal radiotherapy (3DCRT), electron RT, intracavitory brachytherapy,
ortovoltage radiotherapy.
3.Conventional RT, 3D conformal radiotherapy (3DCRT), interstitial
brachytherapy, ortovoltage radiotherapy.
4 3D conformal radiotherapy (3DCRT) electron RT intracavitory and
intraluminal brachytherapy
5 3D conformal radiotherapy (3DCPT) electron PT intensity modulated
5. 5D comonial factomerapy (5DCK1), electron K1, intensity modulated
[automerapy (IWIK I)].
6. 3D conformal radiotherapy (3DCR1), intensity modulated radiotherapy
(IMRT\VMAT).
7. 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy
(IMRT\VMAT) with image-guided radiotherapy (IGRT) based on MV images.
8.Intensity modulated radiotherapy (IMRT\VMAT) with image-guided
radiotherapy (IGRT) based on MV and kV images.
9. Intracavitory, interstitial and intraluminal brachytherapy, ortovoltage
radiotherapy.
10 Intensity modulated radiotherapy (IMRT\VMAT) for stereotactic radiotherapy
and radiosurgery (SBRT/SRS) with image-guided radiotherapy (IGRT) based on
W images in real time
IN V IIIIagets III Ieai UIIIe.
11. Intensity modulated radiotherapy ($IWKI \setminus VMAI$) for stereotactic radiotherapy
and radiosurgery (SBR1/SRS) with image-guided radiotherapy (IGRT) based on
MR images.

	12. Intensity modulated radiotherapy (IMRT\VMAT) for stereotactic radiotherapy
	and radiosurgery (SBRT/SRS) with image-guided radiotherapy (IGRT) based on
	kV images and control active breathing.
	The content of the course covers 5 topics. Each topic is studied through lectures
	and practical experiences.
	Section 1. Introduction. Quality Assurance Basics in Radiation Therapy
	The section covers the main aspects of quality assurance in clinical practice, as
	well as in conducting RT, including such stages as: preradiation preparation based
	on CT, MR (ultrasound, PET) scanners, use of immobilizing devices, prescribing
	RT course (radiobiological calculation), dosimetric planning, treatment, laying the
	patient on the treatment table, assessing the effect of the procedure (RT).
	Section 2. Quality assurance of radiotherapy and dosimetry equipment
	The section is devoted to the physico-dosimetric aspects of the quality assurance
	of radiotherapeutic and dosimetric equipment for such types of RT: conventional
	RT, conformal RT (3DCRT), electronic RT, modern treatment methods such as
	intensity-modulated radiation therapy (IMRT \ VMAT). It also describes the
	quality assurance procedures for dosimetric equipment to ensure quality
	radiotherapy.
	Section 3. Quality assurance of dosimetric planning systems
	This section is devoted to providing quality assurance for dosimetric planning
	systems for such types of R1: conventional R1, conformal R1 (3DCR1),
	electronic R1, modern treatment methods such as intensity modulated radiation thereasy (MDT). In the free such of prostical closes, students are
Course	therapy (INIKI \ VINAI). In the framework of practical classes, students are shown the process of creating regulations and protocols to ensure the quality of
Structure	shown the process of creating regulations and protocols to ensure the quanty of designation planning on the appropriate equipment in aligned practice (properties)
	for laboratory work)
	Section 4 Quality Assurance in Brachytherany
	This section is dedicated to providing quality assurance for all types of
	brachytherapy. In the framework of practical classes, students are shown the
	process of creating regulations and protocols to ensure the quality of therapeutic
	equipment and dosimetric planning for brachytherapy based on international
	recommendations (preparation for laboratory work).
	Section 5. Quality assurance of special equipment for radiotherapy and
	individual exposure plans. Features of monitoring the position of the patient
	during treatment.
	The section is devoted to the physical dosimetric aspects of the quality assurance
	of radiotherapy equipment for such types of radiotherapy as: total body irradiation
	(1BI), stereotactic radiotherapy and radiosurgery (SBR1 / SRS), visual control
	PT introoperative PT (IOPT)
	As part of the practical everyises, students are shown the process of verifying the
	As part of the practical exercises, students are shown the process of verifying the national's placement on the treatment table and individual dosimetric plans on the
	appropriate equipment for stereotactic radiation therapy and radiosurgery (SBRT /
	SRS) and other specialized treatment methods
	1. Lecture room: 634050, Tomsk. Lenina Ave., 2. building 10. room 228.
	2. Laboratory room: 634050, Tomsk, Lenina Ave., 2, building 10, room 123.
Facilities and	3. Facilities and equipment for laboratory works and practical training available at
Equipment	Tomsk, Ivana Chernyh 96/16, rooms 213, 212, 105 (Treatment Planning system
	(PLUNC, XIO, MONACO, HDRplus); rooms 123, 140, 107, 105 (Dosimetric
	equipment for QA (SP3 and IMRT phantom, set of ionization chamber,

	MatriXX, ArcCHECK, SNC and 3DVH system, Refraction system, phantom	
	PTW 19193, diodes PTW 19113 and PTW 19112); rooms 123, 140, 107, 105	
	(Radiotherapy equipment (Linear accelerator Elekta Synergy, gamma apparatus	
	Theratron Equinox 100 and Multisource HDR, Xstrahl 300 X-ray tube).	
	In accordance with TPU rating system we use:	
	- Current assessment which is performed on a regular basis during the semester	
	by scoring the quality of mastering of theoretical material and the results of	
	practical activities (performance tests, perform tasks, problem solving). Max	
Grading	score for current assessment is 37 points, $min - 22$ points.	
Policy	- Course final assessment (exam/ credit test) is performed at the end of the	
·	semester. Max score for course final assessment is 63 points, min -33 points.	
	The final rating is determined by summing the points of the current assessment	
	during the semester and protection of the course project at the end of the semester	
	Maximum overall rating corresponds to 100 points min pass score is 55	
Course Deliev	Attendance is strictly controlled. All classes are obligatory for attendance	
Too shing	Autendance is strictly controlled. All classes are obligatory for autendance.	
Teaching	Compulsory reading:	
Alds and	1. Podgorsak, Ervin B. Radiation Physics for Medical Physicists / Ervin B.	
Resources	Podgorsak. – Cham : Springer International Publishing, - 2016. – 906 p. –	
	Текст: электронныи // SpringerLink. – URL:	
	<u>https://link.springer.com/book/10.1007/978-3-319-25382-4</u> (дата обращения:	
	20.09.2020). – Режим доступа: из корпоративной сети ТПУ.	
	2. Amestoy, William. Review of Medical Dosimetry / William Amestoy Cham	
	: Springer International Publishing, - 2015. — 867 р. — Текст: электронный	
	// SpringerLink. – URL: <u>https://link.springer.com/book/10.1007/978-3-319-</u>	
	<u>13626-4</u> (дата обращения: 20.09.2020). – Режим доступа: из	
	корпоративной сети ТПУ.	
	3. Stereotactic Body Radiation Therapy / by editor Yasushi Nagata. — Tokyo:	
	Springer, - 2015. – 254 р. — Текст: электронный // SpringerLink. – URL:	
	<u>https://link.springer.com/book/10.1007/978-4-431-54883-6</u> (дата обращения:	
	20.09.2020). – Режим доступа: из корпоративной сети ТПУ.	
	4. Brachytherapy. Techniques and Evidences / by editors Y.Yoshioka, J. Itami,	
	M. Oguchi, T. Nakano Singapore: Springer, 2019. – 304 p. – Текст:	
	электронный // SpringerLink. – URL:	
	https://link.springer.com/book/10.1007/978-981-13-0490-3 (дата обрашения:	
	20.09.2020). – Режим лоступа: из корпоративной сети ТПУ.	
	Additional reading:	
	1. Handbook of Image-Guided Brachytherapy / by editor J. Mayadey, Stanley H.	
	Benedict, M. Kamrava, - Cham: Springer, 2017. — 582 p Текст:	
	электронный // SpringerLink. – URL:	
	https://link.springer.com/book/10.1007/978-3-319-44827-5 (дата обрашения:	
	20.09.2020) – Режим доступа: из корпоративной сети ТПУ	
	2 Badakhshi Harun Image-Guided Stereotactic Radiosurgery / Harun	
	2. Dadakhishi, Hardh. Hhage-Guided Stereotache Radiosurgery / Hardh	
	SpringerLink LIPL: https://link.springer.com/book/10.1007/078.2.210	
	SpringerLink. – UKL. <u>https://ink.springer.com/book/10.1007/978-5-519-</u> 20180.2 (remain a fragmentic 20.00.2020) Deputy reserves and	
	59189-2 (дата обращения: 20.09.2020). – Режим доступа: из	
	корпоративной сети ПГУ.	
-	 Evgeniia S. Sukhikh, Associate professor, Nuclear Fuel Cycle Division, School o Nuclear Science and & Engineering, Tomsk Polytechnic University, e-mail: 	
Instructor		
	<u>e.s.sukhikh@gmail.ru</u> , 1el.: +/ (3822) 909-500 ext. 6025	