

APPROVED BY

Director of Nuclear Science	e & Engin	neering School
00	/Oleg	Yu. Dolmatov
<u> </u>	06	2020

.

Course Name: Dosimetry and Protection from Ionizing Radiation

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Specialization: Nuclear medicine

Level of Study: Master Degree Programme

Year of admission: 2020

Semester, year: semester 1, year 1

ECTS: 3

Total Hours: 108

Contact Hours: 32

- Lectures: 16
- Laboratory work: 16

Self-study: 76

Assessment: Graded credit-test Division: Nuclear Fuel Cycle

	n-	
Director of Programme	the for	/Vera V. Verkhoturova
Instructors		_/Valentina S. Yakovleva
-		/ Andrey D. Poberezhnikov

Course name: Dosimetry and Protection from Ionizing Radiation

Course Overview

	The objective of the course is to form a set of competences (learning outcomes)		
Course	to prepare students for operational and engineering activities involving		
Objectives	application of methods for dosimetry and radiation protection, assessment and		
U U	analysis of attenuation of radiation in a substance and radiation exposure risks,		
	nuclear and radiation safety improvement.		
	Upon completion of the course, a graduate is expected to acquire the		
	knowledge of:		
	 ionizing radiation sources; 		
	– basic methods of production personnel and population protection against		
	possible unsafe accidents and disasters;		
	– radiation safety standards,		
	- methods for calculating protection against charged particles, from gamma and		
	neutron radiation:		
	– methods and means of dosimetry and radiometry rules for registration of		
	measurement results in accordance with the requirements of relevant		
	standards and regulatory documents.		
	nhysical fundamentals of dosimetry of ionizing radiation dose values and		
	units of measurement, characteristics of ionizing radiation, tose values and		
	Graduates are also expected to develop the following skills:		
	- to assess nuclear and radiation safety, impact of the radiation on the		
	environment;		
. .	- to select and apply measurement tools and instruments and draw up the		
Learning	measurement results in accordance with the requirements of relevant		
Outcomes	standards and regulatory documents;		
	- to calculate protection from charged particles, gamma and neutron radiation,		
	evaluate radiation conditions, simulate radiation transfer;		
	- to calculate protection from various types of ionizing radiation by using		
	engineering methods to create mathematical models of radiation transfer;		
	- to carry out individual dosimetric control and radiation monitoring of the		
	environment.		
	Graduates should acquire the practical experience in:		
	– application of methods for calculation of biological protection and ionizing		
	radiation intensity, radiation safety standards;		
	– using skills to select the necessary measurement instruments for conducting		
	individual dosimetric monitoring and radiation monitoring of the		
	environment;		
	– implementation of engineering methods for calculating protection from		
	ionizing radiation of various kinds, creating mathematical models of		
	radiation transfer;		
	– using dosimetry and radiometry methods to assess levels of radiation		
	hazardous environmental factors, of substances and materials radioactivity.		

	The course is taught using a variety of teaching forms, including lectures,
	practical experience and learners' self-study.
	The course includes the following obligatory components:
	– 8 lectures;
	– 8 laboratory works;
	– 2 tests (in a written form).
	Main sections of the course are as follows:
Course Outline	- Characteristics of ionizing radiation fields (lectures – 2 hours, lab – 2 hours);
Course Outline	– Quantities and units of the measurement of ionizing radiation (lectures – 4
	hours, $lab - 4$ hours);
	– Dosimetric and radiometric measurement methods and means (lectures – 6
	hours, lab – 6 hours);
	 Protection against ionizing radiation (lectures – 4 hours, lab – 4 hours).
	The course ends with a graded credit-test. Learners are expected to demonstrate
	their knowledge, skills and understanding of the course material by giving full
	and extensive answers to 4 questions each referring to one of the course sections.
Prerequisites	1. Nuclear Physics
(if available)	2. Special chapters of Advance Mathematics
	The target course consists of the five sections.
	Section 1. Characteristics of ionizing radiation fields
	Introduction to dosimetry. Course main aims and objectives. Characteristics of
	ionizing radiation fields.
	Section 2. Quantities and units of ionizing radiation measurement
	Basic and equi-dosimertic quantities and units of their measurements. Ionizing
Course	radiation interaction with matter. Relative biological effectiveness of radiation.
Structure	The Inverse Square Law. Gamma-Equivalent. Specific Gamma-Ray Constants.
	Section 3. Dosimetric and radiometric measurement methods and means
	Review of dosimetric and radiometric measurement methods. Types of
	dosimetric control. Applications of dosimetry and radiometry in radioecology
	and geophysics. Radiation monitoring arrangement.
	Section 4. Protection against ionizing radiation
	protection against external and internal infadiation. Calculation internous for
	1 Lecture room 228 TPU building 10
T 11.4. 1	1. Execute room 220, 11 0 bunding ro.
Facilities and	2. Laboratory room 121, TPU building 10. Classroom for laboratory work
Equipment	equipped with dosimeters and radiometers.
	In accordance with the TPU rating system we use:
	- Current assessment which is performed on a regular basis during the
	semester by scoring the quanty of mastering of theoretical material and
	the results of practical activities (performance tests, perform tasks). Max
Grading Policy	Defense of leb is performed on a regular basis during the semester. May
	- Detense of fab is performed of a regular basis during the semester. Wax
	The final rating is determined by summing the points.
	during the semester and credit test scores at the end of the semester Maximum
	overall rating corresponds to 100 points min pass score is 55 points
Course Deller	Class attendance will be taken into consideration when evaluating students?
Course Folicy	participation in the course. Students are expected to be actively engaged in class
	r r r r r r r r r r r r r r r r r r r

	discussions about the assigned readings. Attendance is strictly controlled. All	
	classes require obligatory presence.	
Teaching Aids	Compulsory reading:	
and Resources	1. Stabin, M. G. Radiation Protection and Dosimetry: An Introduction to Health	
	Physics / M. G. Stabin. – New York : Springer, 2007. – Tekci :	
	bttps://link springer.com/book/10.1007/978-0-387-/1983-3 (дата обращения:	
	20.09.2020) – Режим доступа: из корпоративной сети ТПV	
	2. Cerrito. L. Radiation and Detectors: Introduction to the Physics of Radiation	
	and Detection Devices / L. Cerrito. – New York : Springer, 2017. – Текст :	
	электронный // SpringerLink. – URL:	
	<u>https://www.springer.com/gp/book/9783319531793</u> (дата обращения:	
	20.09.2020). – Режим доступа: из корпоративной сети ТПУ.	
	Additional reading:	
	1. Bréchignac, F. Yu. Kutlakhmedov, P. Balan, V. Kutlakhmedova-	
	Vishnyakova, Equidosimetry – Ecological Standardization and Equidosimetry	
	for Radioecology and Environmental Ecology / F. Brechignac, G. Desmet. –	
	Dordrecht : Springer, 2005. – Tekct : электронный // SpringerLink. – URL:	
	$\frac{\text{Imps://www.springer.com/gp/book/9781402030484}}{20.04.2020}$ (дата обращения:	
	2 Gunta T K Radiation Ionization and Detection in Nuclear Medicine / T K	
	Gunta – Berlin: Heidelberg : Springer-Verlag 2013 – Teker:	
	электронный // SpringerLink – URL:	
	https://www.springer.com/gp/book/9783642340758 (дата обращения:	
	20.04.2020). – Режим доступа: из корпоративной сети ТПУ.	
	1. Yakovleva Valentina Stanislavovna, Doctor of Technical Sciences, Professor	
	of Nuclear Fuel Cycle Division, Nuclear Science & Engineering School, TPU, +7	
	(3822) 70182 (ext 520)9, e-mail: vsyakovleva@tpu.ru	
Instructors	Personal page: http://portal.tpu.ru/SHARED/v/VSYAKOVLEVA/eng	
111311 UCIVI 3	2. Andrey D. Poberezhnikov, Senior lecturer, Nuclear Fuel Cycle Division,	
	School of Nuclear Science and Engineering, +7 (3822) 701-777 (ext. 2260,)	
	e-mail: <u>andrewpad@tpu.ru</u> , personal site:	
	https://portal.tpu.ru/SHARED/a/ANDREWPAD/eng	