МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Дирестор ИШЭ Матвеев А.С. «01» сентября 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

Электромеханические переходные процессы Направление подготовки 13.03.02 Электроэнергетика и электротехника Образовательная программа Электроэнергетика Специализация Электрические станции Уровень образования высшее образование - бакалавриат 7 Курс семестр 3 Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 16 Практические занятия Контактная (аудиториая) 16 работа, ч Лабораторные занятия 16 ВСЕГО 48 60 Самостоятельная работа, ч ИТОГО, ч 108

Вид промежуточной аттестации	Экзамен	Обеспечивающее подразделение	еши еео
И.о. заведующего кафедрой – руководителя отделения на правах кафедры		A	Ивашутенко А.С.
Руководитель ООП	Bi	Me	Шестакова В.В.
Преподаватель	77, 19	occef	Исаев Ю.Н.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Попропород	Индикаторы достижения компетенций			не результатов освоения горы компетенции)
компетенции	Наименование компетенции	Код Наименование индикатора достижения		Код	Наименование
				ОПК(У)-3.4В1	Владеет методами расчета, проектирования энерго систем
ОПК(У)-3	Способен использовать методы анализа и моделирования электромеханиче ских переходных процессов	W.O.W.G.D. a. d.	Способен проводить проектирование одномашинной и двухмашинной энергетических систем в соответствии с техническим заданием и использование стандартных методов.	ОПК(У)-3.4У1	Умеет использовать полученные знания при решении практических задач по проектированию и испытаниям энергосистем
		и.онк(у)-3.4		ОПК(У)-3.431	Знает место и роль электромеханических переходных процессов для элекрических систем
				ОПК(У)-3.432	Знает основные уравнения процессов, схемы замещения и характеристики синхронного генератора
	Способен контролировать техническое состояние			ОПК(У)-5.1В2	Владеет навыками работы с программными комплексами для тестирования энергосистемы на устойчивость
ОПК(У)-5	объектов профессионально й деятельности, организовывать профилактически й осмотр и текущий ремонт по имеющейся технической документации	Применяет методы и технические средства для испытаний и диагностики одномашинной и двухмашинной энергетических систем	ОПК(У)-5.1У2	Умеет проводить эксперименты по заданным методикам с последующей обработкой и анализом результатов	
				ОПК(У)-5.133	Знает типовые стандартные программные средства, используемые при экспериментах

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Индикатор	
Код	Наименование	достижения
		компетенции
	Планировать и проводить расчетные эксперименты, связанные с	
РД 1	определением параметров, характеристик синхронного генератора,	И.ПК(У)-2.1.
	интерпретировать данные и делать выводы.	
РД 2	Анализировать переходные процессы, происходящие в синхронном	И.ПК(У)-2.1.
1Д2	генераторе и трансформаторах.	11.11K(3)-2.1.
РД 3	Выполнять расчеты устойчивости одномашинной и двухмашинной систем,	и пк(у) э і
гдэ	оценивать запас устойчивости	И.ПК(У)-2.1.

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел 1. Введение Преобразования	РД2, РД3	Лекции	2
Парка- Горева, Модель синхронного генератора		Лабораторные занятия	4
тодель синхронного генератора		Самостоятельная работа	5
Раздел 2. Угловые характеристики	РД1, РД2,	Лекции	2
мощности и понятия об устойчивости. Характеристики мощности сложной электрической системы	РД3	Практические занятия	4
SHERIPH ICERON CHEICHIBI		Самостоятельная работа	5
Раздел 3. Влияние промежуточных	РД2, РД3	Лекции	2
параметров схемы на характеристики мощности одномашинной системы. Устойчивость системы		Практические занятия	2
		Самостоятельная работа	5
Раздел 4. Метод малых колебаний для	РД1, РД2,	Лекции	2
анализа статической устойчивости	РД3	Практические занятия	2
		Лабораторные занятия	4
		Самостоятельная работа	5
Раздел 5. Самораскачивание	РД1, РД2,	Лекции	2
генератора. Анализ устойчивости с учетом электромагнитных процессов. Статическая устойчивость для	РД3	Практические занятия	2
двухмашинной системы.		Самостоятельная работа	10
Раздел 6. Динамическая устойчивость	РД1, РД2,	Лекции	2
и критерии динамической	РД3	Практические занятия	2
устойчивости.		Лабораторные занятия	4
		Самостоятельная работа	10
Раздел 7. Динамическая устойчивость	РД1, РД2,	Лекции	2
при 3х фазном, однофазном двух фазном коротких замыканиях.		Практические занятия	2
		Самостоятельная работа	10
Раздел 8. Динамическая устойчивость	РДЗРД1,	Лекции	2
при дефиците мощности.	РД2,	Практические занятия	2
Электрическое торможение. Устойчивость нагрузки		Лабораторные занятия	4
		Самостоятельная работа	10

Содержание разделов дисциплины:

Раздел 1. Ведение. Преобразование Парка-Горева, модель синхронного генератора

Исходные уравнения синхронной машины. Законы преобразования координат вращающейся и покоящейся систем. Представления синхронного генератора в виде ЭДС за сопротивлением, во вращающейся системе Парка-Горева.

Темы лекций:

1. Основные уравнения синхронной машины во вращающейся и покоящейся систем координат и их преимущество.

Названия лабораторных работ:

1. Исследование статической устойчивости одномашинной системы

Раздел 2. Угловые характеристики мощности

Угловые характеристики мощности и понятия об устойчивости. Характеристики мощности сложной электрической системы. Характеристики активной и реактивной мощностей генератора, их графические зависимости. Область устойчивости системы на угловой характеристике генератора. Точки положения равновесия, запас устойчивости. Взаимные и собственные сопротивления системы. Углы сопротивлений, определяющие активные потери системы

Темы лекций:

1. Характеристики активной и реактивной мощностей генератора.

Темы практических занятий:

- 1. Схемы замещения синхронного генератора при наличии APB и без APB
- 2. Расчет запасов устойчивости.

Раздел 3. Влияние промежуточных параметров схемы на характеристики мощности одномашинной системы.

Обобщенная теорема Виета, коэффициенты характеристического уравнения, область их положительных и отрицательных значений. Статическая колебательная и апериодическая устойчивости. Алгебраические критерии устойчивости. Апериодическая устойчивость и колебательная устойчивость. Расположения корней в комплексной плоскости.

Темы лекций:

1. Понятие устойчивости системы

Темы практических занятий:

2. Расчет влияния промежуточных параметров схемы на характеристики мощности одномашинной системы.

Раздел 4. Раздел 4. Метод малых колебаний для анализа статической устойчивости

Линеаризация угловой характеристики в окрестности точки положения равновесия. Синхронизирующая мощность как частота колебаний угла генератора. Определение синхронизирующей мощности. Определение типа устойчивости- колебательной и апериодической. Влияние мощности турбины на синхронизирующую мощность. Модель синхронного генератора с APB пропорционального типа (ПТ). Модель генератора с APB сильного действия (СД). Область эффективной работы APB ПТ, APB СД

Темы лекций:

1. Линеаризация угловой характеристики в окрестности точки положения равновесия. Синхронизирующая мощность как частота колебаний угла генератора.

Темы практических занятий:

2. Линеаризация угловой характеристики мощности. Определение синхронизирующей мощности. Определение типа устойчивости- колебательной и апериодической. Влияние мощности турбины на синхронизирующую мощность.

Названия лабораторных работ:

2. Моделирование синхронного генератора с APB пропорционального типа (ПТ) и сильного действия (СД). Область эффективной работы APB ПТ, APB СД

Раздел 5. Самораскачивание генератора.

Причины возникновения самораскачивание. Понятия о положительном и отрицательном асинхронном моментах-отрицательное демпфирование. Причины их возникновения. Их влияние на устойчивость системы. Отрицательный и положительный асинхронные моменты. Запаздывания вызываемы АРВ ПД.

Темы лекций:

1. Причины возникновения самораскачивание. Понятия о положительном и отрицательном асинхронном моментах-отрицательное демпфирование. Причины их возникновения. Их влияние на устойчивость системы.

Темы практических занятий:

2. Отрицательный и положительный асинхронные моменты. Запаздывания вызываемы АРВ ПД.

Раздел 6. Динамическая устойчивость

Динамическая устойчивость и критерии динамической устойчивости. Энергетические критерии динамической устойчивости. Площадка торможения и ускорения. Понятие о фазовой плоскости как эффективном методе исследования нелинейных систем. Расчет площадок ускорения и торможения. Определение критических углов. Угловое положение равновесия. Сепаратрисса как граница области устойчивости системы.

Темы лекций:

1. Энергетические критерии динамической устойчивости. Площадка торможения и ускорения. Понятие о фазовой плоскости как эффективном методе исследования нелинейных систем.

Темы практических занятий:

2. Расчет площадок ускорения и торможения.

Названия лабораторных работ:

3. Исследование динамической устойчивости одномашинной системы. Расчет площадок ускорения и торможения. Изменение угла генератора и частоты во времени и на фазовой плоскости.

Раздел 7. Динамическая устойчивость при 3х фазном, однофазном двух фазном коротких замыканиях.

Влияние короткий замыканий на устойчивость энергосистемы. Используемые комплексные схемы замещения для расчета шунтов при 3x, 2x и однофазном к.з. Определения точек положения равновесия для нелинейной системы, определения критических углов и углов переключения генератора. Определение переключения углов генератора при различных аварийных режимах. Успешное и не успешное АПВ. Отключение генераторов.

Темы лекций:

1. Используемые комплексные схемы замещения для расчета шунтов при 3x, 2x и однофазном к.з.

Темы практических занятий:

2. Определение переключения углов генератора при различных аварийных режимах.

Раздел 8. Динамическая устойчивость при дефиците мощности. Электрическое торможение. Устойчивость нагрузки

Динамическая устойчивость. Предотвращение выпадания из синхронизма. Дефицит мощности на передающем конце линии. Короткое замыкание в приемной энергосистеме. Электрическое как способ предотвращения выподания из синхронизма. Построения фазовых портретов для анализа устойчивости системы с дефицитом мощности. Критерии устойчивости нагрузки. Критерии устойчивости нагрузки.

Темы лекций:

1. Дефицит мощности на передающем конце линии. Короткое замыкание в приемной энергосистеме. Электрическое как способ предотвращения выподания из синхронизма.

Темы практических занятий:

2. Построения фазовых портретов для анализа устойчивости системы с дефицитом мошности.

Названия лабораторных работ:

1. Исследование устойчивости работы асинхронного двигателя.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Хрущев Ю.В. Электромеханические переходные процессы в электроэнергетических системах: учебное пособие / Ю.В. Хрущев, К.И. Заподовников, А.Ю. Юшков; Томский политехнический университет. 2-е изд. Томск: Изд-во Томского политехнического университета, 2014. 154 с. URL: http://www.lib.tpu.ru/fulltext2/m/2014/m492.pdf (дата обращения: 19.06.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 2. Куликов, Ю. А. Сопротивление материалов. Курс лекций: учебное пособие / Ю. А. Куликов. Санкт-Петербург: Лань, 2017. 272 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/91882 (дата обращения: 19.06.2019). Режим доступа: для авториз. пользователей.

3. Жданов, Петр Сергеевич. Вопросы устойчивости электрических систем / П. С. Жданов; под ред. Л. А. Жукова. — Изд. стер.. — Москва: Альянс, 2015. — 455 с.: ил.. — Текст

Дополнительная литература:

- 1. Электромеханические переходные процессы в электроэнергетических системах: методические указания к выполнению лабораторных работ по курсу «Электромеханические переходные процессы в электроэнергетических системах» для студентов IV курса, обучающихся по направлению 13.03.02 «Электроэнергетика и электротехника» / Национальный исследовательский Томский политехнический университет (ТПУ); сост. Ю. В. Хрущёв; Е. О. Кулешова; Е. Б. Шандарова Томск: Изд-во ТПУ, 2017. URL: http://www.lib.tpu.ru/fulltext2/m/2017/m063.pdf (дата обращения: 19.06.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 2. <u>Фикс Н. П.</u> Методы расчёта устойчивости энергосистем: электронный курс / Н. П. Фикс, Ю. В. Хрущёв; Национальный исследовательский Томский политехнический университет (ТПУ), 2015. URL: http://design.lms.tpu.ru/enrol/index.php?id=532 (дата обращения: 19.06.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 3. Хрущев, Ю. В. Электромеханические переходные процессы в электроэнергетических системах: учебное пособие / Ю. В. Хрущев, К. И. Заподовников, А. Ю. Юшков. Томск: ТПУ, 2012. 154 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/10327 (дата обращения: 19.06.2019). Режим доступа: для авториз. пользователей.
- 4. <u>Вайнштейн Р. А.</u> Математические модели элементов электроэнергетических ситем в расчетах установишихся режимов и переходных процессов: учебное пособие Томск: Изд-во ТПУ, 2010. URL: http://www.lib.tpu.ru/fulltext2/m/2011/m202.pdf (дата обращения: 19.06.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 5. Вайнштейн Р.А. Основы управления режимами энергосистем по частоте и активной мощности, по напряжению и реактивной мощности: учебное пособие / Р. А. Вайнштейн, Н. В. Коломиец, В. В. Шестакова. Томск: Изд-во ТПУ, 2010. URL: http://www.lib.tpu.ru/fulltext2/m/2011/m235.pdf (дата обращения: 19.06.2019) Режим доступа: из корпоративной сети ТПУ. Текст: электронный

6.2. Информационное и программное обеспечение

- 1. Информационно-справочных система «Кодекс» http://kodeks.lib.tpu.ru/
- 2. Научно-электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 3. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/
- 4. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 5. Электронно-библиотечная система «Юрайт» https://urait.ru/
- 6. Электронно-библиотечная система «ZNANIUM.COM» https://new.znanium.com/

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

- 1. Программно-интегрированная среда Mathcad-15, академическая лицензия
- 2. Программно-интегрированная среда MATLAB-Simulink, академическая лицензия.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование специальных помещений	Наименование оборудования
1.	Учебная аудитория для проведения лекционных занятий: 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, учебная аудитория 201	Компьютер – 1 шт.; проектор – 1 шт
2.	Учебная аудитория для проведения практических занятий: 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, учебная аудитория 201	Компьютер – 1 шт.; проектор – 1 шт
3.	Учебная аудитория для проведения лабораторных занятий: 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, учебная аудитория 119	компьютеры – 15 шт.
4.	Аудитория для самостоятельной работы: 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, учебная аудитория 127	компьютеры – 32 шт.;

Рабочая программа составлена на основе Общей характеристики образовательной

Разработчик	(11)	١.
т азработчик	(И	J.

Должность	Подпись	ФИО
Профессор ОЭЭ	receef	Исаев Ю.Н.

Программа одобрена на зас (протокол от «_25»	едании Отделения электроэнерг июня2020_г. №_5_).	етики и электротехники
Руководитель ОЭЭ	A	
к.т.н, доцент		/ Ивашутенко А.С./

Лист изменений рабочей программы дисциплины:

vinet nomenem puod ten noti pummer Anegament			
Учебный год	Содержание /изменение	Обсуждено на заседании ОЭЭ протокол	
2021/22_ учебный год	 Дополнено содержание разделов дисциплины Обновлено программное обеспечение Актуализированы исходные данные для практической части дисциплины 	От 11.05.2021 г. №6	
2022/2023	1. Дополнено содержание разделов дисциплины 2. Обновлено программное обеспечение 3. Актуализированы исходные данные для практической части дисциплины	От 11.05.2022 г. №6	