МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕР		
Директ	op MI	ШЭ
OU	11	А.С. Матвеев
«26»	06	2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2017 г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

Моделирование физических процессов и объектов проектирования Направление подготовки/ 13.03.03 Энергетическое машиностроение специальность Образовательная программа Энергетическое машиностроение (направленность (профиль)) Эксплуатация и обслуживание оборудования Специализация газокомпрессорных станций Уровень образования высшее образование – бакалавриат Курс 3 семестр Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 16 Практические занятия Контактная (аудиторная) _ 32 работа, ч Лабораторные занятия ВСЕГО 48 Самостоятельная работа, ч 60

Вид промежуточной	Зачет	Обеспечивающее	НОЦ
аттестации	Saver	подразделение	И.Н. Бутакова
Заведующий кафедрой –		12	А.С. Заворин
руководитель НОЦ		The Carl	
И.Н. Бутакова на правах			
кафедры			
Руководитель ООП		LIMIT-	Т.С. Тайлашева
Преподаватель	C/Z	col-	А.Н. Субботин

ИТОГО, ч

108

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 6. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код компе-	Наименование компетенции	Результаты освоения	Составляющие результатов освоения (дескрипторы компетенций)	
тенции		ООП	Код	Наименование
	физико-математический аппарат, методы анализа	ОПК(У)-2.В24	Владеет навыками формирования начальных и граничных условий при решении инженерных задач	
ОПК(У)-2		P7	ОПК(У)-2.У29	Умеет использовать методы инженерного анализа для решения комплексных инженерных задач
	экспериментального исследования при решении профессиональных задач		ОПК(У)-2.332	Знает методы инженерного анализа и моделирования, в том числе с применением пакетов прикладных программ

2. Место дисциплины в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	I/oversomoverse	
Код	Наименование	Компетенция
РД1	Понимать методологию математического моделирования и знать способы построения математических моделей.	ОПК(У)-2
РД2	Находить оригинальные решения поставленных задач в рамках своей профессиональной деятельности.	ОПК(У)-2
РД3	Использовать методики обработки результатов экспериментальных исследований с применением пакетов прикладных программ.	ОПК(У)-2
РД4	Использовать методы математического анализа и моделирования физических процессов при проектировании энергетического оборудования, его автоматизации с применением прикладных программ.	ОПК(У)-2

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
		Лекции	2
Раздел 1. Введение в математическое	РД1	Практические занятия	_
моделирование	РД2	Лабораторные занятия	6
		Самостоятельная работа	12
	РД1	Лекции	4
Раздел 2. Методология построения		Практические занятия	_
математических моделей	РД2	Лабораторные занятия	6
	РД3	Самостоятельная работа	12
Раздел 3. Простейшие модели в теории	РД1	Лекции	4

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
горения и теплообмена	РД3	Практические занятия	_
	РД4	Лабораторные занятия	6
		Самостоятельная работа	12
	рπ1	Лекции	2
Раздел 4. Математические модели в	РД1 РД3	Практические занятия	_
теории теплообмена		Лабораторные занятия	8
	РД4	Самостоятельная работа	12
	рπ1	Лекции	4
Раздел 5. Математическое моделирование	РД1	Практические занятия	_
в теории горения	РДЗ	Лабораторные занятия	6
	РД4	Самостоятельная работа	12

Раздел 1. Введение в математическое моделирование

Знакомство с методологией моделирования, с преимуществом перед теоретическим и экспериментальными способами исследования мира. Оценивается роль математического моделирования на современном этапе научно-технического прогресса и в построении информационного общества. Триада «модель—алгоритм—программа».

Темы лекций:

1. Методология математического моделирования. Развитие методов и подходов математического моделирования в истории человечества.

Названия лабораторных работ:

- 1. Особенности граничных условии первого и второго рода.
- 2. Выполнение тестового и индивидуального задания по применению метода наименьших квадратов при использовании квадратичной зависимости.

Раздел 2. Методология построения математических моделей

Знакомство с использованием фундаментальных законов природы, вариационных принципов. Особенности применения аналогий при построении математических моделей. Анализ иерархического подхода к получению моделей. Процессы (этапы) построения математических моделей. Понятие натурного и вычислительного эксперимента.

Темы лекций:

- 1. Способы построения математических моделей.
- 2. Использование фундаментальных законов природы, вариационных принципов. Процесс (этапы) построения математических моделей.

Названия лабораторных работ:

- 1. Иерархические подходы.
- 2. Построение математических моделей.
- 3. Написание и отладка программы на алгоритмическом языке программирования Паскаль, построение графических зависимостей по полученным численным и заданным экспериментальным данным.

Раздел 3. Простейшие модели в теории горения и теплообмена

Знакомство с математическими основами обработки данных экспериментальных исследований, с построением аналитических зависимостей по эмпирическим данным, полученным при исследовании простейших моделей поведения объектов изучения. Алгоритмы применения метода наименьших квадратов при использовании линейной, квадратичной, степенной зависимостей.

Темы лекций:

1. Математические основы обработки данных.

2. Метод наименьших квадратов и алгоритмы применения.

Названия лабораторных работ:

- 1. Изучение алгоритмов метода наименьших квадрат.
- 2. Выполнение тестового и индивидуального задания по применению метода наименьших квадратов при использовании степенной зависимости.
- 3. Написание и отладка программы на алгоритмическом языке программирования Паскаль, построение графических зависимостей по заданным экспериментальным значениям и полученным теоретическим данным.

Раздел 4. Математические модели в теории теплообмена

Знакомство с основными принципами и законами теплопередачи — теплопроводность, конвекция, термическое излучение. Дифференциальное уравнение теплопроводности, вывод для общего случая, запись в декартовой, цилиндрической, сферической системе координат. Условия однозначности для процессов теплопроводности — физические, геометрические, начальные и граничные условия. Примеры построения математической постановки задачи по ее словесному описанию. Численные методы решения задач теплообмена.

Темы лекций:

1. Применение математического моделирования к процессам теплопроводности. Уравнение теплопроводности. Особенности применения математических методов для построения задач.

Названия лабораторных работ:

- 1. Применение метода конечных разностей для одномерной нестационарной задачи теплопроводности.
- 2. Построение сеток, получение дискретного аналога исходной дифференциальной задачи.
- 3. Численное моделирование нестационарной теплопроводности на примере тестовой одномерной задачи: формулировка математической модели, написание и отладка паскаль-программы, графическое представление распределения температуры в исследуемой области.
- 4. Численное моделирование задачи одномерной нестационарной теплопроводности для плоского, цилиндрически или сферически симметричного процесса: формулировка индивидуальной математической модели, написание и отладка паскаль-программы, представление полученного решения в виде графической зависимости.

Раздел 5. Математическое моделирование в теории горения

Знакомство с математическими формулировками законов сохранения массы, импульса и энергии в рамках Лагранжева (траекторного) подхода для описания горения взвешенных частиц твердого и жидкого топлива, многокомпонентной горючей газовой смеси. Физическая и математическая постановка задач горения угольных частиц и газообразного топлива в камерах сгорания. Методы решения систем обыкновенных дифференциальных уравнений. Методы Эйлера и Рунге-Кутта. Алгоритм их численной реализации на ЭВМ. Математическое моделирование газодинамических процессов. Математическая модель горения пылеугольного топлива в топочной камере котлоагрегата, газообразной смеси в камере сгорания ГПА. Основные уравнения, их связь с фундаментальными законами. Метод решения математической модели. Краткая характеристика пакета прикладных программ ANSYS Fluent, реализующего рассматриваемую математическую модель на ЭВМ.

Темы лекций:

- 1. Законы сохранения массы, импульса, и энергии. Лагранжев и Эйлеровы подходы.
- 2. Моделирование газодинамических процессов. Модели турбулентности. Особенности задания граничных условий для процессов горения.

Названия лабораторных работ:

- 1. Применение метода Эйлера или Рунге-Кутта для решения системы обыкновенных дифференциальных уравнений (ОДУ).
- 2. Численное решение задачи о горении частицы/смеси в ограниченном объеме.
- 3. Численное исследование определенных процессов в прямоточной камере парового котла при заданных условиях и параметрах.
- 4. Изучение пакета прикладных программ ANSYS Fluent.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
 - Изучение тем, вынесенных на самостоятельную проработку;
 - Подготовка к лабораторным работам;
 - Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

- 1. Советов Б.Я. Моделирование систем: учебник [Электронный ресурс] / Б.Я. Советов, С.А. Яковлев; Санкт-Петербургский государственный электротехнический университет (СПбГЭТУ). 7-е изд.. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). Москва: Юрайт, 2014. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/FN/fn-85.pdf.
- 2. Гайдукова О.С. Численное моделирование физико-химических процессов: учебное пособие [Электронный ресурс] / О.С. Гайдукова, Д.О. Глушков; Национальный исследовательский Томский политехнический университет. 1 компьютерный файл (pdf; 3.1 MB). Томск: Изд-во "АлКом", 2020. Схема доступа: https://www.lib.tpu.ru/fulltext2/m/2020/m057.pdf.

Дополнительная литература

- 1. Калиткин Н.Н. Численные методы [Электронный ресурс] учебник в электронном формате: / Н.Н. Калиткин, Е.А. Альшина. Москва: Академия, 2013. Кн. 1: Численный анализ. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). 2013. 1 Мультимедиа CD-ROM. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-11.pdf.
- 2. Калиткин Н.Н. Численные методы [Электронный ресурс] учебник в электронном формате: / Н.Н. Калиткин, Е.А. Альшина. Москва: Академия, 2013. Кн. 2: Методы математической физики. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). 2013. 1 Мультимедиа CD-ROM. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-12.pdf.
- 3. Гоц А.Н. Численные методы расчета в энергомашиностроении: учебное пособие для вузов. 3-е изд., испр. и доп. Москва: Инфра-М, 2015. 352 с.: ил. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C287680)
- 4. Гулин А.В. Введение в численные методы в задачах и упражнениях: учебное пособие / А.В. Гулин, О.С. Мажорова, В.А. Морозова; Московский государственный университет им. М. В. Ломоносова (МГУ), Факультет

- вычислительной математики и кибернетики. Москва: Инфра-М Аргамак-Медиа, 2014. 368 с.: ил. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C28 0489)
- 5. Субботин А.Н. Основы теории горения натурального топлива [Электронный ресурс]: учебное пособие / А.Н. Субботин; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 1.6 МВ). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Режим доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m069.pdf.
- 6. Волков К.Н., Емельянов В.Н., Тетерина И.В., Яковчук М.С. Газовые течения в соплах энергоустановок [Электронный ресурс]. Москва: ФИЗМАТЛИТ, 2017. 328 с. Книга из коллекции ФИЗМАТЛИТ Инженерно-технические науки. Схема доступа: https://e.lanbook.com/book/104967.

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Электронная библиотека Томского политехнического университета (http://catalog.lib.tpu.ru).
- 2. Архив научных журналов «Neicon» (http://archive.neicon.ru);
- 3. Поисковая система Федерального института промышленной собственности по интеллектуальной собственности, патентам и товарным знакам (http://www1.fips.ru);
- 4. Электронная библиотека института инженеров электротехники и электроники «IEEE» (http://ieeexplore.ieee.org).

Лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

- 1. Microsoft Office 2016 Standard Russian Academic;
- 2. PTC Mathcad 15 Academic Floating;
- 3. Ansys 2020.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения	Анализатор дымовых газов Testo350 - 1 шт.;
	учебных занятий всех типов,	Доска аудиторная поворотная - 1 шт.; Стол письменный - 1 шт.;
	курсового проектирования,	Комплект учебной мебели на 52 посадочных мест;
	консультаций, текущего	Компьютер - 1 шт.; Проектор - 1 шт.
	контроля и промежуточной	
	аттестации	
	634034, Томская область, г.	
	Томск, Ленина проспект, 30а, 406	
2.	Аудитория для проведения	Доска аудиторная настенная - 1 шт.; Шкаф для одежды - 1 шт.;
	учебных занятий всех типов,	Тумба стационарная - 1 шт.; Тумба навесная - 1 шт.; Стол
	курсового проектирования,	письменный - 9 шт.; Комплект учебной мебели на 14
	консультаций, текущего	посадочных мест; Доска аудиторная поворотная - 1 шт.;
	контроля и промежуточной	Компьютер - 12 шт.; Принтер - 1 шт.; Проектор - 1 шт.;

№	Наименование специальных помещений	Наименование оборудования
	аттестации (компьютерный класс)	Телевизор - 1 шт.
	634034, Томская область, г. Томск, Ленина проспект, 30а, 2246	

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 13.03.03 Энергетическое машиностроение, специализация «Эксплуатация и обслуживание оборудования газокомпрессорных станций» (приема 2017 г., очная форма обучения).

Разработчик(и):

Должность	Подпись	ФИО
Профессор	Agrif -	А.Н. Субботин

Программа одобрена на заседании кафедры ПГС и ПГУ (протокол от 24.05.2017 г. № 25).

Заведующий кафедрой – руководитель НОЦ И.Н. Бутакова на правах кафедры, д.т.н., профессор

_А.С. Заворин

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании НОЦ И.Н. Бутакова (протокол)
2018/2019 уч. год	Внесены изменения в разделы: Учебно-методическое обеспечение; Материально-техническое обеспечение дисциплины; Информационное и программное обеспечение.	Протокол №11 от 27.08.2018
2019/2020 уч. год	Внесены изменения в разделы: Учебно-методическое обеспечение; Материально-техническое обеспечение дисциплины; Информационное и программное обеспечение;	Протокол №29 от 30.05.2019
2020/2021 уч. год	Обновлены разделы: Информационное и программное обеспечение.	Протокол №44 от 26.06.2020