ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2018 г

ФОРМА ОБУЧЕНИЯ очная

Физико-химические методы диагностики наноматериалов. Аналитическое оборудование

Направление подготовки/ специальность	22.03.01 Материаловедение и технологии материалов
Образовательная программа	Материаловедение и технологии материалов
(направленность (профиль))	
Специализация	Наноструктурные материалы
Уровень образования	высшее образование - бакалавриат
Курс	3 семестр 6
Трудоемкость в кредитах	6
(зачетных единицах)	
Руководитель ОМ	В.А. Клименов
гуководитель ОМ	Б.А. КЛИМЕНОВ
Руководитель ООП	О.Ю. Ваулина
Преподаватель	Г.В. Лямина

1. Роль дисциплины «Физико-химические методы диагностики наноматериалов. Аналитическое оборудование» в формировании компетенций выпускника:

Код		Составляющие результатов освоения (дескрипторы компетенций)		
компетенци и	Наименование компетенции	Код	Наименование	
	Способен использовать в исследованиях и расчетах знания о методах исследования,	ПК(У)-4.В5	Владеет опытом определения структуры, состава и свойств наноматериалов с использованием оптических методов анализа	
ПК(У)-4	анализа, диагностики и моделирования свойств веществ (материалов), физических и химических процессах, протекающих в	ПК(У)-4.У5	Умеет исследовать свойства наноматериалов (конденсированных сред, содержащих наночастицы) методами УФ, видимой, ИК спектроскопии и методами комбинационного рассеяния света (КР)	
	материалах при их получении, обработке и модификации	ПК(У)-4.35	Знает основные законы взаимодействия света с веществом, специфику оптики наноструктур, способы расшифровки спектров	
	Способен осуществлять поиск, критический	УК(У)-1.В6	Владеет опытом сравнения научных достижений в области исследования оптических свойств наноматериалов	
УК(У)-1	анализ и синтез информации, применять системный подход для решения	УК(У)-1.У6	Умеет определять критерии для оценки научного исследования в области исследования оптических свойств наноматериалов	
	поставленных задач	УК(У)-1.36	Знает основные базы данных научных публикаций и перечень журналов, специализирующихся на оптических методах диагностики материалов	

2. Показатели и методы оценивания

Пла	Планируемые результаты обучения по дисциплине		Наименование раздела	Методы оценивания
Код	Наименование	контролируемой	дисциплины	(оценочные мероприятия)
		компетенции		
	Определять структуру, состав и свойства		Индивидуальный проект	Защита индивидуального
РД-1	наноматериалов с использованием оптических	ПК(У)-4	Применение методов оптической	проекта
1 Д-1	методов анализа	1111(3)-4	спектроскопии для изучения	Экспертная оценка
	методов анализа		свойств наноматериалов	
			Раздел (модуль) 1. Применение	Тест 1, 2
РД-2	Прогнозировать свойства наноматериалов по данным	ПК(У)-4	УФ спектроскопии для	Сравнение с эталоном
1 Д-2	УФ и видимой спектроскопии		исследования свойств	
			наноматериалов	
	Расшифровывать ИК и КР спектры наноструктурных		Раздел (модуль) 2. Применение	Тест 3, 4
РД-3	материалов с спользованием эталонов, таблиц полос	ПК(У)-4	ИК, КР спектроскопии для	Сравнение с эталоном
1 Д-3	поглощения и литературных данных		исследования состава и свойств	
	поглощения и литературных данных		наноматериалов	
	Применять знания основных законов взаимодействия		Раздел (модуль) 1.	Индивидуальное задание 1,
РД-4	света с веществом при выборе метода диагностики	ПК(У)-4		2
	наноматериалов			Экспертная оценка

Пла	Планируемые результаты обучения по дисциплине		Наименование раздела	Методы оценивания
Код	Наименование	контролируемой	дисциплины	(оценочные мероприятия)
		компетенции	D () 2	
РД-5	Учитывать специфику оптики наноструктур, при	ПК(У)-4	Раздел (модуль) 2.	Индивидуальное задание 3, 4
	выборе метода диагностики наноматериалов			Экспертная оценка
	Парамия спариом могим и постимом и в области		Индивидуальный проект	Защита индивидуального
РД-6	Проводить сравнение научных достижений в области	УК(У)-1		проекта
	исследования оптических свойств наноматериалов			Экспертная оценка
	Определять критерии для оценки научного		Индивидуальный проект	Защита индивидуального
РД-7	исследования в области исследования оптических	УК(У)-1		проекта
	свойств наноматериалов			Экспертная оценка
	Использовать литературные источники,		Индивидуальный проект	Защита индивидуального
РД-8	специализирующиеся на оптических методах	УК(У)-1		проекта
ГД-8	диагностики материалов при составлении	y K(y)-1		Экспертная оценка
	критериальных обзоров			
	Готовить образцы наноматериалов (суспензии,		Индивидуальный проект	Защита индивидуального
РД-9		ПК(У)-4	(экспериментальная часть)	проекта
	компакты) для регистрации оптических спектров			Экспертная оценка

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом — «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов

% выполнения задания	Соответствие традиционной оценке	Определение оценки
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки
90%÷100%	18 ÷ 20	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	11 ÷ 13		Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия		Примеры типовых контрольных заданий		
1.	Тест		ов: ования являются основными для растворителя, использующегося в спектрофотометрическом одно или несколько)		
		А. растворите.	ль должен быть прозрачным в измеряемой области спектра		
		В. растворите:	пем могут быть только неполярные органические жидкости		
			С. растворителем может быть только вода или этиловый спирт		
		 D. растворитель должен быть очищен от примесей, так как чувствительность метода высока 			
		Е. растворитель должен иметь органическую природу			
		2. Укажите процессы энергетических переходов, соответствующие определенной области спектра			
		Микроволновая	Изменение вращательных состояний молекулы		
		ИК-излучение Изменение состояний валентных электронов			
		Видимое излучение	Изменение состояний внутренних электронов		
		Рентгеновская			
		3. Как называ	вется область спектра в интервале длин волн от 400 до 760 нм?		

	Оценочные мероприятия	Примеры типовых контрольных заданий
	Оценочные мероприятия	 А. Ренттеновское излучение В. УФ-излучение С. Микроволновое излучение D. Видимое излучение Е. ИК-излучение 4. В ИК-спектре вещества наблюдаются полосы 3300, 2950, 2860, 2120, 1465 и 1385 см⁻¹. Какому из приведенных ниже соединений принадлежит этот спектр. Выбрать правильный вариант? а)CH₃CH₂—CH=CH—CH₂—CH=CH—CH₃ б)CH₃CH₂CH₂—C≡C—CH₂CH₂CH₃ в)HC≡C—CH₂CH₂CH₂CH₂CH₃
2	H	r)CH ₃ CH ₂ —CH=CH—CH=CH—CH ₂ CH
2.	Индивидуальное задание	Вопросы: 1. На примере двух молекул (любых), укажите в каком случае может быть получен спектр в УФ-, видимой областях спектра, а в каком нет. Ответ поясните подробно. Файл, который Вы прикрепляете должен быть не более 1-2 страниц 2. Расшифровка ИК спектра 1. Привести структурную формулу метакриловой кислоты. 2. ИК-спектр метакриловой кислоты (см. прикрепленный файл) поделить на области валентных колебаний простых связей, область валентных колебаний двойных и тройных связей и область отпечатков пальцев. 3. Подписать все пики: численное значение, какая функциональная группа, вид колебания. 4. Занести все данные в таблицу:

	Оценочные мероприятия	Примеры типовых контрольных заданий			
3.	Защита индивидуального	Задание			
	проекта	Вам необходимо выбрать одно вещество и выполнить для него следующее задание.			
		Составьте обзор, описывающий не менее трех методик УФ-видимой спектроскопии и/или ИК-спектроскопии			
		Для каждой методики необходимо указать			
		1. Способ подготовки образца для анализа			
		2. Марку прибора			
		3. Полученные результаты (спектры)			
		4. Выводы, которые сделали авторы публикации на основании результатов оптической спектроскопии 5. Подготовить образцы для анализа на спектрометре			
		 подготовить образцы для анализа на спектрометре Расшифровать и описать экспериментальные реультаты 			
		В заключении проекта необходимо сравнить подходы разных авторов.			
		Одно вещество может выбрать только один человек. Задание не должно повторяться			
		•			
		• Порошок оксида алюминия (Заполнено)			
		Порошок оксида циркония (Заполнено)			
		Керамика на основе оксида циркония с оксидом иттрия (Заполнено)			
		• Керамика на основе оксида иттрия (Заполнено)			
		• Коллоидные растворы наночастиц сульфида кадмия (Заполнено)			
		• Коллоидные растворы селенида кадмия (Заполнено)			
		• Углеродные нанотрубки (порошок) (Заполнено)			
		• Покрытия на основе оксида титана (Заполнено)			
		• Порошок оксида титана (Заполнено)			
		• Квантовые точки фосфида индия			
		• Порошок оксида церия (Заполнено)			
		• Керамика на основе оксида церия (Заполнено)			
		• Наночастицы магнетита (Заполнено)			
		• Керамические покрытия на основе оксида олова (Заполнено)			
		• Порошок оксида цинка (Заполнено)			

	Оценочные мероприятия	Примеры типовых контрольных заданий
		 Пленки на основе оксида висмута (Заполнено) Наночастицы селенида кадмия (Заполнено)
4.	Экзамен	Пример экзаменационного билета 1. Если при релеевском рассеянии, рассеяние происходит мгновенно (без задержки) на той же длине волны, что же тогда меняется в фотоне? Дайте развернутый ответ? 2. Перед вами ряд соединений. Предположите в каком колебательном спектре (ИК- или КР-) наиболее интенсивно будут проявляться полосы колебаний функциональных групп каждого из представленных соединений. Ответ поясните? а) CH₂=CH-CH=CH₂ б) ОН 3. Объясните суть комбинационного рассеяния? Почему оно значительно слабее релеевского рассеяния? Что такое стоксова и антистоксова полосы в КР-спектре? Как они возникают? 4. Углеводород C₀H₁₂ имеет в ИК-спектре полосы полощения при 3045 и 1650 см⁻¹. При озонолизе образуются альдегид и кетон с одинаковым числом атомов углерода в молекуле. Написать структурную формулу углеводорода C₀H₁₂. Написать уравнение реакции озонолиза (за дополнительные баллы).

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания	
1.	Тест	Тестирование проводится в электронном курсе во время практических занятий и позволяет контролировать	
		знания и умения, усвоенные, в основном в ходе лекций и самостоятельной работы. Методика оценки –	
сравнение с эталоном. Время – 15-30 минут. В рамках дисциплины прово,		сравнение с эталоном. Время – 15-30 минут. В рамках дисциплины проводится 4 теста, максимальная оценка	
		5 баллов.	
2.	Индивидуальное	уальное Индивидуальное задание выполняется в рамках самостоятельной работы, проверяется преподавателем в	
	задание	электронном курсе. Оценивание проводятся преподавателем и студентами (экспертная оценка) по	

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		критериям. Мероприятие позволяет умения, заявленные в качестве результатов обучения по дисциплине.
	<u> </u>	Оценка (максимум 10 баллов)
3.	Защита	Проект позволяет контролировать профессиональный опыт и умения студентов. Студенты получают
	индивидуального	индивидуальное задание. Оценивание проводится преподавателем в электронном курсе, а затем, после
	проекта	допуска, студент представляет доклад с презентацией защиты проекта. Максимальный балл – 20.
4.	Экзамен	Проводится в письменной форме. Экзаменационный билет содержит 10 теоретических и практических
		вопросов, в том числе, не имеющих фиксированного ответа, по литературе, вынесенной на самостоятельную
		проработку, материалам лекций, лабораторных и практических заданий. Время на подготовку 90 минут.
	<u> </u>	Методика оценки – сравнение с эталоном и/или экспертная оценка. Максимальная оценка – 20 баллов.