МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Директор ИЯТШ

(Долматов О.Ю,)

«01»сентября 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

КВАНТОВЫЕ ЗАКОНЫ АТОМНОЙ ФИЗИКИ Направление подготовки/ 14.03.02 Ядерные физика и технологии специальность Образовательная программа (направленность (профиль)) Специализация Уровень образования высшее образование - бакалавриат Курс семестр 5 Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 32 Практические занятия Контактная (аудиторная) 32 работа, ч Лабораторные занятия 24 88 ВСЕГО Самостоятельная работа, ч 128 в т.ч. отдельные виды самостоятельной работы с Курсовой проект выделенной промежуточной аттестацией (курсовой проект, курсовая работа) ИТОГО, ч 216

Вид промежуточной	Экзамен,	Обеспечивающее	ртко
аттестации	диф. зачет	подразделение	
Заведующий кафедрой -		att.	А.Г. Горюнов
руководитель отделения		SAA	
		90	
Руководитель ООП		110	П.Н. Бычков
Преподаватель	8	LEN	Ю.М. Черепенников
		1	

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код Наименование		Индикаторы д	остижения компетенций	Составляющие результатов освоения (дескрипторы компетенции)	
компетенции	компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
	Способен использовать базовые знания естественнонаучных	х И.ОПК(У)-1.3	Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма, основ оптики, квантовой механики и атомной физики в инженерной деятельности	ОПК(У)-1.3В6	Владеет опытом расчета параметров оптического излучения через инверсную среду с учетом потерь энергии
ОПК(У)-1	дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования			ОПК(У)-1.3У6	Умеет правильно применять основные законы квантовой механики при решении физических задач
				ОПК(У)-1.336	Знает особенности применения законов атомной физики в науке, промышленности и медицине
	Способен осуществлять поиск, критический анализ и синтез		Анализирует задачу,	УК(У)-1.1В1	Владеет опытом применения законов естественных наук и математических методов и моделей для решения задач теоретического и прикладного характера
УК(У)-1	информации, применять системный подход для решения поставленных задач	И.УК(У)-1.1	выделяя ее базовые составляющие	УК(У)-1.1У1	Умеет решать задачи теоретического и прикладного характера
				УК(У)-1.131	Знает законы естественных наук и математические методы теоретического характера
I I	Способен использовать научно-техническую информацию, отечественный и зарубежный опыт по		Способен осуществлять поиск научно- технической информации для обработки данных, проведения исследования, используя компьютерные технологии и информационные ресурсы	ПК(У)-1.1В1	Владеет навыком поиска научно-технической информации по заданной теме, используя компьютерные технологии и информационные ресурсы
ПК(У)-1	тематике исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области	И.ПК(У)-1.1		ПК(У)-1.1У1	Умеет использовать информационные ресурсы для поиска актуальной научнотехнической информации
ПК(У)-3	Готов к проведению физических экспериментов по заданной методике, составлению описания проводимых исследований и анализу полученных экспериментальных данных	И.ПК(У)-3.1	Проводит эксперименты по заданной методике, составление описания проводимых исследований и анализ результатов	ПК(У)-3.1В3	Владеет опытом оценки достоверности результатов, полученных экспериментально данных, обрабатывать результаты экспериментов
				ПК(У)-3.1У3	Умеет самостоятельно анализировать физические процессы, происходящие при различных способах возбуждения атомов исследуемой среды
				ПК(У)-3.133	Знает законы периодической системы элементов, уравнение Шредингера для стационарных состояний, законов движения заряженных частиц в электрическом и

Код	Наименование	Индикаторы достижения компет			ощие результатов освоения рипторы компетенции)
компетенции	компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
					магнитном полях, специальной теории относительности
				ПК(У)-3.1В4	Владеет опытом расчёта туннельного эффекта микрочастиц основываясь на положениях квантовой механики
				ПК(У)-3.1У4	Умеет вычислять энергии переходов электрона в атоме
				ПК(У)-3.134	Знает тонкое и сверхтонкое расщепления уровней электронов в атоме, постулаты Бора, квантование орбит электронов в атом, основные постулаты квантовой механики

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Планируемые результаты обучения по дисциплине Инди		
Код	Наименование	достижения компетенции	
РД 1	Способность анализировать линейчатые спектры излучения и поглощения атомов.	И.ОПК(У)-1.3 И.ПК(У)-3.1	
РД 2	Выполнять расчеты траекторий движения частиц в центральном поле. Понимать угол рассеяния и дифференциальное сечение в статистической теории рассеяния. Применять знания о туннельном эффекте микрочастиц, вычислять его с потенциалом прямоугольной формы и с произвольным потенциалом. Выполнять расчёты в электрической модели атома Томсона.	И.УК(У)-1.1 И.ОПК(У)-1.3. И.ПК(У)-3.1 И.ПК(У)-1.1	
РД 3	Применять знания математического аппарата для описания процессов рассеяния, теории Бора-Зоммерфельда, в расчетах релятивистской и квантовой механики.	И.УК(У)-1.1 И.ПК(У)-3.1	
РД 4	Знать устройство и принцип работы ускорителей и лазеров.	И.ОПК(У)-1.3	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.		Лекции	4
Явления с проявлением	р П 1	Практические занятия	4
атомистической природы вещества и	РД1	Лабораторные занятия	-
первые модели атома		Самостоятельная работа	6
Dearer (veryer) 2		Лекции	4
Раздел (модуль) 2. Законы электромагнитного излучения	рпо	Практические занятия	4
веществ и законы Кирхгофа	РД2	Лабораторные занятия	16
веществ и законы кирхгофа		Самостоятельная работа	9
		Лекции	4
Раздел (модуль) 3.	рпо	Практические занятия	4
Статистическая теория рассеяния	РД2	Лабораторные занятия	-
		Самостоятельная работа	12
Раздел (модуль) 4.		Лекции	4
Полуквантовая теория Бора для атома	РД3	Практические занятия	4
водорода и формализм Бора –		Лабораторные занятия	-
Зоммерфельда		Самостоятельная работа	12
Раздел (модуль) 5.		Лекции	4
Релятивистская механика. Связь	РД3	Практические занятия	4
массы и энергии (формула		Лабораторные занятия	-
Эйнштейна)		Самостоятельная работа	11
Danier (112 2007) (Лекции	4
Раздел (модуль) 6.	рпи	Практические занятия	4
Ускорители заряженных частиц и	РД4	Лабораторные занятия	4
лазеры		Самостоятельная работа	14
Dearer (veryer) 7	РД3	Лекции	8
Раздел (модуль) 7. Квантовая механика и ее основные		Практические занятия	8
		Лабораторные занятия	4
постулаты и законы		Самостоятельная работа	11
Курсовой проект		Самостоятельная работа	64

Содержание разделов дисциплины:

Раздел 1. Явления с проявлением атомистической природы вещества и первые модели атома

История атомистики. Опыты Перрена и их объяснения Эйнштейном – свидетельство атомистической структуры веществ. Электрическая модель атома Дж. Дж. Томсона (1903 гг.) и её противоречия с наблюдаемым линейчатым спектром излучения водорода и других веществ. Планетарная модель атома Резерфорда.

Темы лекций:

- 1. История атомистики. Опыты Перрена.
- 2. Электрическая модель атома Дж. Дж. Томсона (1903 гг.).

Темы практических занятий:

- 1. Модель атома Томсона.
- 2. Планетарная модель атома Резерфорда.

Раздел 2. Законы электромагнитного излучения веществ и законы Кирхгофа

Модели электромагнитного излучения веществ. Интегральные и спектральные характеристики излучения. Законы Кирхгофа теплового равновесного излучения. Законы Стефана-Больцмана и Вина. Формула Релея-Джинса. Гипотеза квантов энергии и формула Планка.

Темы лекций:

- 1. Модели электромагнитного излучения веществ.
- 2. Законы Кирхгофа, формула Планка.

Темы практических занятий:

- 1. Интегральные и спектральные характеристики излучения. Законы Кирхгофа теплового равновесного излучения.
- 2. Законы Стефана-Больцмана и Вина. Формула Релея-Джинса. Гипотеза квантов энергии и формула Планка.

Названия лабораторных работ:

- 1. Устройство и характеристики рентгеновской трубки, общие правила работы с рентгеновской трубкой.
- 2. Спектр излучения рентгеновской трубки. Изучение ХРИ.
- 3. Монохроматизация излучения рентгеновской трубки.

Раздел 3. Статистическая теория рассеяния

Движение частиц (тел) в поле центральной силы, его особенности. Задача Кеплера. Траектории движения в полярных координатах. Теория рассеяния центральным (кулоновским) полем. Аксиальная симметрия процесса рассеяния. Связь полярного угла с углом рассеяния и прицельным параметром. Статистическая теория рассеяния. Формула Резерфорда. Планетарная модель атома Резерфорда.

Темы лекций:

- 1. Особенности движения тел в центральном поле. Траектории движения тел задачи Кеплера в полярных координатах. Теория рассеяния центральным (кулоновским) полем. Аксиальная симметрия процесса рассеяния.
- 2. Связь угла рассеяния с прицельным параметром. Вывод формулы Резерфорда. Опыт Резерфорда и его интерпретация. Планетарная модель атома Резерфорда.

Темы практических занятий:

- 1. Движение частиц (тел) в поле центральной силы. Задача Кеплера. Траектории движения в полярных координатах.
- 2. Рассеяние центральным кулоновским полем. Связь полярного угла с углом рассеяния и прицельным параметром. Статистическая теория рассеяния. Формула Резерфорда. Планетарная модель атома Резерфорда.

Раздел 4. Полуквантовая теория Бора для атома водорода и формализм Бора – Зоммерфельда

Критика модели атома Резерфорда. Постулаты Бора. Квантование момента количества движения. Опыт Франка и Герца. Тормозное излучение и тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Электронные оболочки атомов. Опыт и формула Мозли. Главное, орбитальное и магнитное квантовые числа электронов в атоме. Спектроскопические обозначения состояний электрона в атоме. Спин электрона. Сложение угловых моментов. Полный угловой момент электрона на орбите. Тонкое расщепление уровней. Принцип Паули.

Заполнение электронных оболочек в сложных атомах. Периодическая система элементов Д. Менделеева. Расчёт простых и сложных периодов химических элементов. Магнитный момент электрона. Опыт Штерна и Герлаха. Эффект Зеемана и эффект Штарка.

Темы лекций:

- 1. Постулаты Бора. Опыт Франка и Герца. Тормозное излучение и тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Электронные оболочки атомов. Квантование момента количества движения. Спектроскопические обозначения состояний электрона в атоме. Спин электрона.
- 2. Сложение угловых моментов. Полный угловой момент электрона на орбите. Принцип Паули. Периодическая система элементов Д. Менделеева. Магнитный момент электрона. Опыт Штерна и Герлаха. Эффект Зеемана и эффект Штарка.

Темы практических занятий:

- 1. Постулаты Бора. Квантование момента количества движения.
- 2. Задачи на применение теории Бора-Зоммерфельда.

Раздел 5. Релятивистская механика. Связь массы и энергии (формула Эйнштейна)

Движение заряженной частицы в магнитном поле. Вывод уравнения движения. Скорость. Траектория. Селектор скоростей. Зависимость массы от скорости. Уравнение Эйнштейна-Ньютона. Движение заряженной частицы в постоянном электрическом поле с использованием уравнения Ньютона и уравнения Эйнштейна-Ньютона. Сравнение зависимостей координаты и скорости от времени в классическом и релятивистском подходах. Движение заряженной частицы в бесконечном однородном постоянном электрическом поле с использованием уравнения Ньютона и Эйнштейна-Ньютона. Различия законов движения, полученных из этих уравнений. Импульс силы, работа силы с использованием уравнения Эйнштейна-Ньютона. Связь массы и энергии (формула Эйнштейна).

Темы лекший:

- 1. Движение заряженной частицы в магнитном поле. Вывод уравнения движения. Уравнение Эйнштейна-Ньютона.
- 2. Движение заряженной частицы в бесконечном однородном постоянном электрическом поле с использованием уравнения Ньютона и Эйнштейна-Ньютона. Связь массы и энергии (формула Эйнштейна).

Темы практических занятий:

- 1. Движение заряженной частицы в постоянном электрическом поле с использованием уравнения Ньютона и уравнения Эйнштейна-Ньютона. Сравнение зависимостей координаты и скорости от времени в классическом и релятивистском подходах.
- 2. Применение формулы Эйнштейна (связь массы и энергии) при решении задач субатомной физики.

Раздел 6. Ускорители заряженных частиц и лазеры

Типы ускорителей заряженных частиц, принцип их работы. Ускорительная трубка. Линейный резонансный ускоритель. Циклотрон. Фазотрон. Изохронный циклотрон. Электронные и протонные синхрофазотроны. Крупнейшие существующие, проектируемые ускорители, коллайдеры и их основные характеристики. Бетатроны. Принцип работы. Их применение в промышленности и в медицине. Лазеры. Свойства лазерного излучения. Основные элементы и принцип работы лазера. Типы лазеров и области их применения.

Темы лекций:

- 1. Ускорительная трубка. Линейный резонансный ускоритель. Циклотрон. Фазотрон. Изохронный циклотрон. Электронные и протонные синхрофазотроны.
- 2. Крупнейшие существующие, проектируемые ускорители, коллайдеры и их основные характеристики. Бетатроны. Принцип работы. Их применение в промышленности и в медицине. Лазеры.

Темы практических занятий:

- 1. Принципы работы ускорителей:
 - а) (ускорительной трубки, линейного резонансного ускорителя);
 - б) (циклотрона, фазотрона, изохронного циклотрона);
 - в) электронных и протонных синхротронов и синхрофазотронов).
- 2. Примеры современных и проектируемых ускорителей и коллайдеров, их основные характеристики.
- 3. Бетатроны. Принцип работы и их применение в промышленности и в медицине.
- 4. Лазеры:
 - а) спонтанное излучение и поглощение фотона;
 - б) вынужденное (индуцированное излучение), свойства лазерного излучения.
 - в) скорости перехода, коэффициенты излучения Эйнштейна;
 - г) основные элементы и принцип работы лазера;
 - ж) типы лазеров и области их применения.

Названия лабораторных работ:

1. Измерение длины волны лазерного излучения.

Раздел 7. Квантовая механика и ее основные постулаты и законы

Фотоэффект и дуальность света. Гипотеза Л. де Бройля. Опыты К. Дэвиссона и Л. Джермера. Дифракция рентгеновских лучей на кристаллической решётке. Дуальность движущихся частиц. Опыт Бибирмана, Сушкина и Фабриканта. Статистические закономерности в квантовой механике. Сведения из теории вероятностей и статистики. Операторы. Собственные функции и собственные значения операторов. Принцип соответствия. Основные операторы квантовой механики и их свойства. Оператор Гамильтона. Оператор квадрата момента импульса в сферических координатах. Волновая функция микрочастицы. Волновая функция микрочастицы. Уравнение Шрёдингера. Вектор тока вероятностей микрочастицы. Закон сохранения электрического заряда. Стационарное решение уравнения Шрёдингера и его свойства. Волновая функция свободной частицы. Одномерное решение уравнения Шрёдингера для свободной частицы. Частица в потенциальной яме с бесконечными стенками. Туннельный эффект для потенциального барьера прямоугольной формы. Туннельный эффект для потенциального барьера произвольной формы. Квантовый гармонический осциллятор. Движение частицы в центральном поле. Радиальное уравнение и его решение. Квантовая теория атома водорода.

Темы лекций:

- 1. Фотоэффект и дуальность света. Гипотеза Л. де Бройля. Опыты К. Дэвиссона и Л. Джермера. Дифракция рентгеновских лучей на кристаллической решётке. Статистические закономерности в квантовой механике.
- 2. Операторы. Собственные функции и собственные значения операторов. Принцип соответствия. Основные операторы квантовой механики и их свойства. Оператор Гамильтона. Оператор квадрата момента импульса в сферических координатах.
- 3. Волновая функция микрочастицы. Уравнение Шрёдингера. Закон сохранения

- электрического заряда. Стационарное решение уравнения Шрёдингера и его свойства.
- 4. Туннельный эффект для потенциального барьера прямоугольной и произвольной формы. Квантовый гармонический осциллятор. Движение частицы в центральном поле. Радиальное уравнение и его решение. Квантовая теория атома водорода.

Темы практических занятий:

- 1. Экспериментальные основы квантовой механики. Статистические закономерности квантовой механики.
- 2. Операторы. Собственные значения и собственные функции операторов. Принцип соответствия при записи операторов физических величин. Основные операторы квантовой механики (оператор Гамильтона, оператор квадрата момента импульса и др.).
- 3. Волновая функция микрочастицы. Уравнение Шредингера. Математические требования к волновой функции. Плотность вероятности и плотность тока вероятности. Стационарное уравнение Шредингера.
- 4. Прохождение микрочастиц через потенциальные барьеры. Туннельный эффект для потенциального барьера прямоугольной формы. Туннельный эффект для потенциальных барьеров произвольной формы. Квантовый гармонический осциллятор.

Названия лабораторных работ:

1. Дифракция рентгеновских лучей на кристаллах, определение характеристик кристаллов.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Выполнение курсовой работы или проекта, работа над междисциплинарным проектом;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1.Учебно-методическое обеспечение

- 1. Шпольский Э. В. Атомная физика: учебник: в 2 томах / Э. В. Шпольский. 8-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 1: Введение в атомную физику 2010. 560 с. ISBN 978-5-8114-1005-7. Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/442.
- 2. Шпольский Э. В. Атомная физика: учебник: в 2 томах / Э. В. Шпольский. 6-е изд, стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Основы квантовой механики и строение электронной оболочки атома 2010. 448 с. ISBN 978-5-8114-1006-4. Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/443.

3. Кузнецов С. И. Курс физики с примерами решения задач: учебное пособие / С. И. Кузнецов. — 4-е изд., перераб. и доп. — Санкт-Петербург: Лань, [б. г.]. — Часть III: Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц — 2014. — 336 с. — ISBN 978-5-8114-1719-3. Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/53685.

Дополнительная литература

- 1. Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Москва: Советская энциклопедия, 1983. 928 с.
- 2. Пономарёв Л.И. Под знаком кванта. М. Физматлит. 2007. 415с.
- 3. Маленькая энциклопедия «Физика микромира». Под ред. Д.В. Ширкова. М.: Советская энциклопедия. 1980. 527с.

6.2.Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в средеLMSMOODLE и др. образовательные и библиотечные ресурсы):

- 1. Электронно-библиотечная система «Лань» https://e.lanbook.com/.
- 2. Электронно-библиотечная система «Юрайт» https://urait.ru/.
- 3. Государственная корпорация по атомной энергии «Росатом» http://www.rosatom.ru/

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

7-Zip; Adobe Acrobat Reader DC; Adobe Flash Player; Amazon Corretto JRE 8; Cisco Webex Meetings; Design Science MathType 6.9 Lite; Far Manager; Google Chrome; Notepad++; WinDjView; Zoom Zoom; AkelPad; Document Foundation LibreOffice; Microsoft Office 2007 Standard Russian Academic; Mozilla Firefox ESR; Tracker Software PDF-XChange Viewer; ABBYY FineReader 12 Corporate; MathWorks MATLAB Full Suite R2017b; Mozilla Thunderbird; PSF Python 2.7; PSF Python 3; PTC Mathcad Prime 6 Academic Floating.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации	Доска аудиторная настенная - 2 шт.;Комплект учебной мебели на 102 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.; Телевизор - 2 шт.
	634028, Томская область, г. Томск, Ленина проспект, д. 2, ауд. 228 (Учебный корпус №10)	
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс)	Комплект учебной мебели на 8 посадочных мест; Компьютер - 12 шт.
	634028, Томская область, г. Томск, Ленина проспект, д. 2, ауд. 122 (Учебный корпус №10)	
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (научная лаборатория)	Оборудование лабарат.стенда для изуч.гамма-гамма корреляций - 1 шт.;Лабораторный комплекс на базе УИМ2-2Д - 1 шт.;Радиометр 20046 - 1 шт.;Лабораторная установка Рентгеновское излучение кристаллических структур (метод Лауэ) - 1 шт.;Оборудование к

	634028, Томская область, г. Томск, Ленина проспект, д. 2, ауд. 123 (Учебный корпус №10)	лабораторному стенду для изучения потока космических м-мезонов - 1 шт.; Доска аудиторная настенная - 5 шт.;Комплект учебной мебели на 16 посадочных мест; Компьютер - 1 шт.; Проектор - 1 шт.
4.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634028, Томская область, г. Томск, Ленина проспект, д. 2, ауд. 125А (Учебный корпус №10)	Доска аудиторная настенная - 2 шт.;Тумба стационарная - 1 шт.;Комплект учебной мебели на 18 посадочных мест; Проектор - 1 шт.; Принтер - 1 шт.; Компьютер - 6 шт.
5.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634028, Томская область, г. Томск, Ленина проспект, 2, строен. 4, ауд. 326 (Учебный корпус №11)	Комплект учебной мебели на 56 посадочных мест; Проектор - 1 шт.; Компьютер - 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 14.04.02 — Ядерные физика и технологии, специализация — Физика кинетических явлений (приема 2020 г., очная форма обучения).

Разработчик:

Должность	ФИО	
профессор	Трясучев В.А.	

Программа одобрена на заседании ОЯТЦ (протокол №29-д от 01.09.2020).

Заведующий кафедрой - руководитель отделения на правах кафедры, д.т.н.

_____Горюнов А.Г.