ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2019 г.

ФОРМА ОБУЧЕНИЯ очная

	Тепломассообмен
Направление подготовки	13.03.01 Теплоэнергетика и теплотехника
Образовательная программа (направленность (профиль))	Инженерия теплоэнергетики и теплотехники
Специализация	Автоматизация технологических процессов и производств в теплоэнергетике и теплотехнике
Уровень образования	высшее образование – бакалавриат
Курс	3 семестр 5
Трудоемкость в кредитах (зачетных единицах)	6
Заведующий кафедрой - руководитель НОЦ И.Н. Бутакова на правах кафедры	Заворин А.С.
Руководитель ООП	Антонова А.М.
Преподаватель	Борисов Б.В.

1. Роль дисциплины «Тепломассообмен» в формировании компетенций выпускника:

Элемент образовательной		Код	Наименование	Индикаторы	достижения компетенций	Составляющие р	езультатов освоения (дескрипторы компетенций)
программы (дисциплина, практика, ГИА)	Семестр	компетенции	компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
	5	5 ПК(У)-1	Способен применять знания теоретических основ теплотехники и гидрогазодинамики при решении научных и практических профессиональных задач	И.ПК(У)-1.1	Применяет основные законы термодинамики, тепломассообмена, движения И.ПК(У)-1.1 жидкости и газа для анализа явлений и процессов в теплоэнергетических и теплотехнических системах	ПК(У)-1.1В1	Владеет опытом анализа явлений и процессов в теплоэнергетических и теплотехнических системах, аппаратах и агрегатах
						ПК(У)-1.1У1	Умеет выявлять сущность термодинамических, тепломассобменных, гидрогазодинамических явлений и процессов и применять для их расчета соответствующие законы
						ПК(У)-1.131	Знает основные физические явления и законы технической термодинамики, тепломассообмена, гидрогазодинамики и их математическое описание
Тепломассообмен						ПК(У)-1.1В2	Владеет опытом исследования и расчетов процессов и циклов преобразования энергии и передачи теплоты
						ПК(У)-1.1У2	Умеет проводить исследования и расчет процессов и циклов преобразования энергии и передачи теплоты
						ПК(У)-1.132	Знает методы исследования и методики расчета процессов и циклов преобразования энергии и передачи теплоты
				И.ПК(У)-1.2	Применяет знания свойств рабочих тел и теплоносителей для расчета процессов в теплоэнергетических и теплотехнических системах	ПК(У)-1.2В1	Владеет опытом использования знаний свойств рабочих тел и теплоносителей при расчетах теплоэнергетических и теплотехнических установок и их оборудования
						ПК(У)-1.2У1	Умеет использовать знания свойств рабочих тел и теплоносителей при расчетах теплоэнергетических и теплотехнических установок и их оборудования
						ПК(У)-1.231	Знает свойства рабочих тел и теплоносителей

2. Показатели и методы оценивания

Планируемые результаты обучения по дисциплине		Код индикатора		
Код	Наименование	достижения контролируемой компетенции (или ее части)	Наименование раздела дисциплины	Методы оценивания (оценочные мероприятия)
РД 1	Знать, понимать и уметь пользоваться основными понятиями и определениями тепломассообмена	И.ПК(У)-1.1 И.ПК(У)-1.2	Раздел 1. Введение. Понятия, параметры и основные законы теплообмена. Теплопроводность Раздел 2. Основные положения конвективного тепломассоообмена. Раздел 3. Теплообмен излучением Раздел 4. Теплопередача со сложным теплообменом	Защита отчетов по лабораторным работам Защита контрольной и ИДЗ Защита раздела курсовой работы Коллоквиум Ответ на вопрос экзамена
РД 2	Знать, понимать и уметь пользоваться понятиями и закономерностями основных процессов переноса теплоты	И.ПК(У)-1.1 И.ПК(У)-1.2	Раздел 1. Введение. Понятия, параметры и основные законы теплообмена. Теплопроводность Раздел 2. Основные положения конвективного тепломассоообмена. Раздел 3. Теплообмен излучением Раздел 4. Теплопередача со сложным теплообменом	Защита отчетов по лабораторным работам Защита контрольной и ИДЗ Защита раздела курсовой работы Коллоквиум Ответ на вопрос экзамена
РД3	Владеть методами анализа полей температур при различных процессах тепломассопереноса, определения тепловых потоков применительно к основным теплотехническим приборам	И.ПК(У)-1.1 И.ПК(У)-1.2	Раздел 1. Введение. Понятия, параметры и основные законы теплообмена. Теплопроводность Раздел 2. Основные положения конвективного тепломассоообмена. Раздел 3. Теплообмен излучением Раздел 4. Теплопередача со сложным теплообменом	Защита отчетов по лабораторным работам Защита контрольной и ИДЗ Защита раздела курсовой работы Коллоквиум Ответ на вопрос экзамена Ответ на вопрос экзамена
РД4	Владеть методами экспериментальной оценки параметров тепломассопереноса	И.ПК(У)-1.1 И.ПК(У)-1.2	Раздел 1. Введение. Понятия, параметры и основные законы теплообмена. Теплопроводность Раздел 2. Основные положения конвективного тепломассоообмена. Раздел 3. Теплообмен излучением Раздел 4. Теплопередача со сложным теплообменом	Защита контрольной и ИДЗ Защита раздела курсовой работы Коллоквиум Ответ на вопрос экзамена

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий экзамена

% выполнения заданий экзамена	Экзамен, балл	Соответствие традиционной оценке	Определение оценки
90%÷100%	18 ÷ 20	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности, необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	14 ÷ 17	-	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	11 ÷ 13		Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	0 ÷ 10	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Защита отчетов по	Пример задания:

	Оценочные мероприятия	Примеры типовых контрольных заданий
	лабораторным работам	Определение коэффициента теплопроводности воздуха.
		Пример вопросов к лабораторной работе.
		1. Что такое теплопроводность, термическое сопротивление, стационарный процесс.
		2. Основное соотношение, используемое в работе, и как условие применения данного
		соотношения реализуется в условиях эксперимента.
		3. Состав лабораторного оборудования, последовательность выполнения эксперимента и
		определение систематической погрешности.
		4. Техника безопасности при проведении эксперимента.
5.	Контрольная работа	Пример задания:
		Расчет эффективного значения коэффициента теплопроводности.
		Пример вопросов к контрольной работе.
		1. Основное соотношение для стационарной теплопроводности.
		2. Термическое сопротивление и его виды.
		3. Понятие эффективного значения коэффициента теплопроводности.
6.	Защита курсовой работы и	Пример задания:
	ИДЗ	Расчет (конструктивный или поверочный) теплообменного аппарата по варианту.
		Содержание проекта:
		Пояснительная записка со схемой, порядком расчета и расчетом теплообменника-
		рекуператора.
		Пример вопросов при защите курсовой работы.
		1. Теплообменные аппараты и их разновидности.
		2. Основные уравнения для расчетов теплообменников-рекуператоров.
		3. Виды расчетов теплообменников-рекуператоров.
		4. Теплоотдача, теплопередача и их расчет.
		5. Конвективная теплоотдача без и с учетом фазовых переходов.
7.	Коллоквиум и экзамен	Примерный перечень контрольных вопросов:
		1. Температурное поле, градиент температуры. Закон (гипотеза) Фурье.
		2. Температура, тепло, тепловой поток, плотность, теплового потока, линейная плотность
		теплового потока, термическое сопротивление и его виды.
		3. Расчет сложного теплообмена. Последовательная и параллельная передача теплоты.
		Теплопередача.
		4. Основной закон конвективного теплообмена (Ньютона-Рихмана). Внешнее термическое
		сопротивление.
		5. Дифференциальные уравнения теплопроводности (вывод). Смысл коэффициентов

Оценочные мероприятия	Примеры типовых контрольных заданий
	теплопроводности и температуропроводности
	6. Условия однозначности для уравнения теплопроводности. Краевые условия.
	7. Стационарная теплопередача через плоскую одно- и многослойную стенку.
	8. Схема, диаграммы и расчёт К.П.Д. цикла ГТУ с учётом многоступенчатого расширения.
	9. Дифференциальные уравнения конвективного теплообмена.
	10. Условия однозначности для дифференциального уравнения конвективного теплообмена.
	11. Понятие гидродинамического пограничного слоя. Толщина гидродинамического пограничного слоя
	12. Понятие теплового пограничного слоя. Его связь с толщиной гидродинамического пограничного слоя и коэффициентом теплоотдачи.
	13. Подобие физических процессов. Критерии подобия.
	13. Подобие физических процессов. Критерии подобия. 14. Гидромеханическое подобие. Критерии и их физический смысл
	15. Моделирование процессов теплообмена, правила моделирования, получение критериальных уравнений.
	16. Особенности моделирования теплоотдачи при ламинарном и турбулентном течении жидкости.
	17. Обработка и обобщение опытных данных при моделировании процессов теплообмена на примере экспериментального определения α свободой конвекции вокруг горизонтального цилиндра.
	18. Обработка и обобщение опытных данных при моделировании процессов теплообмена на примере экспериментального определения α вынужденной конвекции вдоль плоской поверхности.
	19. Теплоотдача при пузырьковом кипении жидкости в большом объеме.
	20. Основные предпосылки и допущения модели кружилина для пузырькового кипения в большом объёме.
	21. Структура двухфазного потока в трубах парогенератора.
	22. Расчёт теплоотдачи при кипении движущейся жидкости в трубах.
	23. Основные законы лучистого теплообмена.
	24. Закон Кирхгофа.
	25. Закон Ламберта.
	25. Закон Ламосрта. 26. Связь законов Стефана-Больцмана и Планка.
	20. Съязь законов Стефана-рольцмана и планка.

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Защита отчетов по	Оценивание проводит преподаватель. На защите:
	лабораторным работам	– обучающийся предъявляет отчет и делает краткое сообщение, сопровождаемое показом
		демонстрационных материалов;
		 преподаватель задает обучающемуся вопросы, и заслушивают ответы;
		– преподаватель оценивает ответы на вопросы в соответствии с критериями в п.3.
		Защита может проходить в публичной или индивидуальной форме.
		По итогам защиты преподаватель делает выводы о степени сформированности результатов
		обучения.
2.	Защита отчета по	Оценивание проводит преподаватель. На защите:
	контрольной работе и ИДЗ	- обучающийся предъявляет отчет и делает краткое сообщение, сопровождаемое показом
		демонстрационных материалов;
		 преподаватель задает обучающемуся вопросы, и заслушивают ответы;
		- преподаватель оценивает ответы на вопросы в соответствии с критериями в п.3.
		Защита проходит, как правило, в публичной форме с вовлечением в дискуссию остальных
		студентов.
		По итогам защиты преподаватель делает выводы о степени сформированности результатов
		обучения.
3.	Защита отчета по курсовой	Оценивание проводит преподаватель. На защите:
	работе	 обучающийся предъявляет отчет и делает краткое сообщение, сопровождаемое показом
		демонстрационных материалов;
		 преподаватель задает обучающемуся вопросы, и заслушивают ответы;
		– преподаватель оценивает ответы на вопросы в соответствии с критериями в п.3.
		Защита проходит, как правило, в публичной форме с вовлечением в дискуссию остальных
		студентов.
		По итогам защиты преподаватель делает выводы о степени сформированности результатов
		обучения.
		Ответ оценивается от 60 до 50 баллов, в том случае, если ответ соответствует
		следующим критериям: студент полно раскрыл ответ на вопрос в объеме, предусмотренном
		программой и учебником; ответил на вопросы грамотным языком в необходимой
		последовательности; продемонстрировал знание теоретической программы, положенной в
		основу расчета, показал навыки владения методиками расчета теплообменного аппарата,
		выбора оборудования, продемонстрировал знание нормативной документации, отвечал

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
		самостоятельно без наводящих вопросов преподавателя. Возможны одна-две неточности при
		освещении второстепенных вопросов.
		Ответ оценивается <i>от 49 до 36 баллов</i> в том случае, если ответ в основном
		соответствует требованиям на отличную отметку, но при этом существует один из
		недостатков: допущены один-два недочета при освещении основного содержания ответа,
		исправленные по замечанию экзаменатора; допущена ошибка или более двух недочетов при
		ответе на второстепенные вопросы.
		Ответ оценивается <i>от 35 до 15 баллов</i> в том случае, если в процессе ответа неполно или
		непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и
		продемонстрированы умения, достаточные для дальнейшего усвоения программного
		материала; студент не смог привести примеры для прояснения теории; при изложении
		теоретического материала выявлена недостаточная сформированность основных
		компетенций.
		Ответ оценивается как <i>неудовлетворительный</i> (менее 15 баллов) в том случае, если
		студент не смог ответить на большинство вопросов и не продемонстрировал теоретические
		знания и практические навыки выполнения проекта в минимальном объеме, предусмотренном
		программой; отсутствует последовательность изложение и употребление необходимой
		терминологии; все ответы сопровождаются наводящими вопросами членов комиссии.
4.	Коллоквиум, экзамен	Оценивание проводит преподаватель. На коллоквиуме:
		 преподаватель задает обучающемуся вопросы, и заслушивают ответы;
		 могут быть заданы теоретические и практические вопросы;
		 преподаватель оценивает ответы на вопросы в соответствии с критериями в п.3.
		Коллоквиум проходит в публичной или индивидуальной форме.
		По итогам коллоквиума преподаватель делает выводы о степени сформированности результатов
		обучения.