МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

VTBEP#//

Матвеев А.С.

«26» 06

2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ ОЧНАЯ

Паровые и газовые турбины Направление подготовки/ 13.03.01 Теплоэнергетика и теплотехника специальность Образовательная программа Агрегаты электростанций и газоперекачивающих (направленность (профиль)) систем Агрегаты газоперекачивающих станций Специализация Уровень образования высшее образование - бакалавриат 6 семестр Курс 3 Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс 24 Лекции 16 Практические занятия Контактная (аудиторная) работа, ч Лабораторные занятия 8 ВСЕГО 48 Самостоятельная работа, ч 60 ИТОГО, ч 108

Вид	экзамен	Обеспечивающее	НОЦ
промежуточной аттестации		подразделение	И.Н.Бутакова
Заведующий кафедрой -		Atu	Заворин А.С.
руководитель НОЦ И.Н.			
Бутакова на правах кафедры		The same	
Руководитель ООП		110/1/ 1	Тайлашева Т.С.
Преподаватель		100	Ромашова О.Ю.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5.4 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код компетенци	Наименование компетенции	Индикаторы д	достижения компетенций	Составляющие результатов освоения (дескриптор компетенции)	
И	·	Код индикатора	Наименование индикатора достижения	Код	Наименование
			Использует знание теплофизических	ОПК(У)-3.2В1	Владеет опытом использования знаний теплофизических свойств рабочих тел и теплоносителей при расчетах теплоэнергетических и теплотехнических установок и их оборудования
		И.ΟΠΚ(У)-3.2	свойств рабочих тел при расчетах теплотехнических установок и систем	ОПК(У)-3.2У1	Умеет использовать знания теплофизических свойств рабочих тел и теплоносителей при расчетах теплоэнергетических и теплотехнических установок и их оборудования
	Способен демонстрир овать			ОПК(У)-3.231	Знает теплофизические свойства рабочих тел и теплоносителей
	применение основных способов получения, преобразов	Демонстрирует понимание	ОПК(У)-3.3В1	Владеет опытом исследования и расчетов процессов и циклов преобразования энергии и	
ОПК(У)-		ания, транспорта и И.ОПК(У)-3.3 использова ния теплоты в теплотехни ческих установках	основных законов термодинамики и термодинамических соотношений и применяет для расчетов термодинамических процессов, циклов и их показателей	ОПК(У)-3.3У1	передачи теплоты Умеет проводить исследования и расчет процессов и циклов преобразования энергии и передачи теплоты
				ОПК(У)-3.331	Знает методы исследования и методики расчета процессов и циклов преобразования энергии и передачи теплоты
		Делает выводы об эффективности	ОПК(У)-3.5В1	Владеет опытом расчетного анализа параметров и показателей энергетических установок и их оборудования	
		и.опк(у)-3.5 и.опк(у)-3.5 и.опк(у)-а.5	преобразования, транспорта и использования энергии в теплоэнергетических установках, нетрадиционных	ОПК(У)-3.5У1	Умеет рассчитывать параметры и показатели энергетических установок и их оборудования
				ОПК(У)-3.531	Знает основные технологии преобразования, транспортировки и использования энергии топлива; принцип действия и устройство нетрадиционных и возобновляемых источников энергии

	Способен выполнять специальны е расчеты		Выполнение тепловых и гидравлических расчетов, расчетов тепловых схем с выбором оборудования	ПК(У)-4.1В1	Владеет опытом выполнения тепловых и гидравлических расчетов энергетического оборудования
ПК(У)-4	для проектиров ания котельных,	И.ПК(У)- 4.1		ПК(У)-4.1У1	Умеет выполнять тепловых и гидравлические расчеты энергетического оборудования
	центральны х тепловых пунктов, малых теплоэлект роцентрале й	4.1		ПК(У)-4.131	Знает тепловые и гидравлические расчеты энергетического оборудования

2. Место дисциплины в структуре ООП

Дисциплина относится к базовой части, модуль направления подготовки Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Гомпотоница	
Код	Наименование	Компетенция
	Знать устройство турбомашин и термодинамические процессы,	
РД1	происходящие в них и их ступенях, уметь рассчитывать параметры	ОПК(У)-3
	и скорости рабочего тела.	
рпэ	Использовать методики определения оптимальных характеристик	$O\Pi V(V)$ 2
РД2	турбинных ступеней и установок при выборе проектных решений	ОПК(У)-3
РД3	Определять качественные и количественные показатели работы	$\Pi K(\mathbf{V}) A$
1 Д3	турбомашин.	ПК(У)-4
	Анализировать изменение параметров и показателей работы	
РД4	турбомашин в процессе испытаний и эксплуатации для выбора	ПК(У)-4
	надежных и оптимальных режимов.	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1. Циклы и	РД1	Лекции	2
параметры турбоустановок		Практические занятия	2
		Лабораторные занятия	-
		Самостоятельная работа	5
Раздел (модуль) 2. Тепловой	РД2	Лекции	4
процесс в турбинной ступени		Практические занятия	2
		Лабораторные занятия	4
		Самостоятельная работа	10
Раздел (модуль) 3.	РД2;	Лекции	4
Многоступенчатые паровые	РД3	Практические занятия	2

турбины		Лабораторные занятия	-
-		Самостоятельная работа	10
Раздел (модуль) 4. Переменный	РД4	Лекции	4
режим турбины		Практические занятия	4
		Лабораторные занятия	4
		Самостоятельная работа	10
Раздел (модуль) 5.	РД4	Лекции	2
Регулирование, защита,		Практические занятия	2
маслоснабжение турбины		Лабораторные занятия	-
		Самостоятельная работа	5
Раздел (модуль) 6.	РД1	Лекции	4
Газотурбинные и парогазовые	РД3	Практические занятия	2
установки		Лабораторные занятия	-
		Самостоятельная работа	10
Раздел (модуль) 7.	РД1	Лекции	4
Особенности конструкции		Практические занятия	2
турбомашин		Лабораторные занятия	-
		Самостоятельная работа	10

4. Структура и содержание дисциплины (модуля)

Раздел 1. Циклы и параметры турбоустановок

Типы турбомашин, их классификация. Простейшие схемы и циклы паротурбинных, газотурбинных и парогазовых установок. Типы паровых и газовых турбин и их классификация. Элементы паротурбинных, газотурбинных и парогазовых установок и их назначение. Коэффициенты полезного действия турбины и турбинной установки.

Темы практических занятий:

1. Показатели работы ПТУ, ГТУ, ПГУ.

Раздел 2. Тепловой процесс в турбинной ступени

Основные уравнения потока сжимаемой и несжимаемой жидкости: состояния, неразрывности, количества движения, сохранения энергии. Устройство и принцип действия простейшей одноступенчатой турбины активного типа. Тепловой процесс в турбинной ступени. Решетки ступеней турбин. Процессы в сопловых решетках паровых турбин: скорости истечения, типы сопел, потери энергии, скоростные коэффициенты, коэффициенты расхода. Расширение потока в косом срезе решеток. Классификация решеток, обозначение их. Геометрические, газодинамические, режимные параметры решеток. Классификация потерь в решетках: составляющие коэффициента потерь, их характеристика.

Темы практических занятий

1. Расчет паровой турбинной ступени.

Лабораторная работа

1. Выбор оптимального значения относительной окружной скорости ступени.

Раздел 3. Многоступенчатые паровые турбины

Необходимость применения многоступенчатых турбин. Конструкция многоступенчатой турбины. Изменение параметров вдоль проточной части, процесс в h-s диаграмме. Преимущества многоступенчатых турбин. Дополнительные потери.

Коэффициент возврата тепла; использование выходной энергии потока в ступенях. Разбивка теплоперепадов по цилиндрам. Предварительные расчеты первой и последней ступеней цилиндров. Распределение теплоперепадов между ступенями. Предельные размеры последних ступеней, предельная мощность. Определение расхода пара на турбину. Осевые усилия и способы их уравновешивания. Концевые уплотнения турбин.

Темы практических занятий:

1. Разбивка теплоперепада по ступеням.

Раздел 4. Переменный режим турбины

Понятие переменного (нерасчетного) режима. Переменный режим суживающихся и расширяющихся решеток. Сетка относительных расходов. Предельное отношение давлений для расширяющейся решетки. Изменение степени реакции и расхода пара через ступень. Распределение давлений и теплоперепадов в ступенях турбины при изменении режима работы.

Работа одиночной ступени при переменном режиме. Распределение давлений и теплоперепадов в турбине при изменении пропуска пара. Дроссельное парораспределение. Регулирование мощности при скользящем давлении. Сопловое и обводное парораспределение. Выбор способа парораспределения для турбин.

Темы практических занятий:

- 1. Сетка относительных расходов.
- 2. Переменные режимы конденсационных и теплофикационных турбин.

Лабораторная работа

1. Системы парораспределения турбины

Раздел 5. Регулирование, защита, маслоснабжение

Задачи регулирования паровой турбины. Пример принципиальной регулирования турбины электростанций. атомных Статическая характеристика регулирования, ee рациональная форма, степень неравномерности характеристики и ее роль в переходных процессах турбины и при параллельной работе турбогенераторов. Синхронизатор. Требования к системе регулирования. Защита турбин; ее роль в обеспечении надежной работы турбины и в бесперебойном снабжении электроэнергией потребителей. Примеры принципиальных схем маслоснабжения паровых турбин.

Темы практических занятий:

1. Система регулирования паровой турбины.

Раздел 6. Газотурбинные и парогазовые установки

Схемы и циклы ГТУ. Работа газовой турбины в составе энергетических и приводных газотурбинных установок. --Основные показатели работы ГТУ. Способы повышения экономичности ГТУ. Одновальные ГТУ с регенерацией. Сложные и многовальные ГТУ. Режимы работы ГТУ. Совмещенная характеристика газовой турбины и компрессора. Способы регулирования нагрузки ГТУ. Энергетическая характеристика ГТУ. Влияние температуры наружного воздуха на показатели работы ГТУ.

Парогазовые установки. Схемы ПГУ. Выбор параметров рабочего тела на одно-, двухи трехконтурных ПГУ. Показатели тепловой экономичности ПГУ.

Темы практических занятий:

1. Расчет схемы простой ГТУ.

Раздел 7. Особенности конструкции турбомашин

Особенности конструкции паровых турбин КЭС, ТЭЦ, АЭС, ПГУ. Конструкции основных деталей газовых турбин. Способы охлаждения деталей. Конструкционные особенности сложных и многовальных ГТУ.

Темы практических занятий:

1. Предельная мощность паровой турбины.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в следующих видах и формах:

– Работа с лекционным материалом, поиск и обзор литературы и электронных

- источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий, расчетно-графических работ;
- Подготовка к лабораторным работам, к практическим занятиям;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Чумаков Ю.А. Теория и расчет транспортных газотурбинных двигателей: учебник / Ю.А. Чумаков. Москва: Форум Инфра-М, 2012. 448с. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/241724).
- 2. Ляшков В.И. Тепловые двигатели и нагнетатели: учебное пособие / В.И.Ляшков. Москва: Абрис, 2012. 167с. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/225582)

Дополнительная литература:

- 3. Паровые и газовые турбины для электростанций: учебник для вузов / А.Г.Костюк, В.В.Фролов, А.Е.Булкин, А.Д.Трухний; под ред. А.Г.Костюка. 3-е изд., перераб. и доп. Москва: Изд-во МЭИ, 2008. 556 с. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/143619);
- 1. Буров А.Л. Тепловые двигатели: учебное пособие / А.Л.Буров; Московский Государственный индустриальный университет. 2-е изд., испр. и доп. Москва: МГИУ, 2008. 224с. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/178386)
- 2. Нигматулин И.Н. Тепловые двигатели: учебное пособие / И.Н. Нигматулин, П.Н. Шляхин, В.А. Ценев. Москва: Высшая школа, 1974. 375с. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/36311)
- 3. Газоперекачивающие агрегаты с газотурбинным приводом на магистральных газопроводах: учебное пособие / Б.П.Поршаков [и др.]; Российский государственный университет нефти и газа им. И.М. Губкина (РГУ Нефти и Газа). Москва: Недра, 2010. 246с.
- 4. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/214277)
- 5. Щегляев А.В. Паровые турбины. Теория теплового процесса и конструкции турбин: учебник: в 2 кн. / А.В. Щегляев. 7-е изд., перераб. и доп. —Екатеринбург: АТП, 2015. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/289373)
- 6. Паровые и газовые турбины: сборник задач: учебное пособие / под ред. Б.М. Трояновского, Г.С.Самойловича. 3-е изд., перераб. Москва: Энергоатомиздат, 1987. 235 с.
- 7. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/36291)
- 8. Турбины тепловых и атомных электростанций. Проект многоступенчатой паровой турбины: учебное пособие / В.И.Беспалов, С.У.Беспалова. Томск: Изд-во ТПУ, 2006. 100с. (http://catalog.lib.tpu.ru/catalogue/simpledocument/RU/TPU/book/68980)
- 9. Трухний А.Д. Атлас конструкций деталей турбин; AtlasofTurbinePartsDesign: учебное пособие: в 2 ч. / А.Д.Трухний, Б.Н. Крупенников, А.Н роицкий; Московский энергетический институт (Технический университет) (МЭИ (ТУ)). 3-

- е изд., перераб. и доп. Москва: Издательский дом МЭИ, 2007. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/149629)
- 10. Singh M.. Blade Design and Analysis for Steam Turbines / M.P.Singh, G.Lucas New York: McGraw-Hill, 2011. 364 p.

(http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/245677)

- 11. Boyce M.P. Gas Turbine Engineering Handbook / M.P.Boyce. 4th ed. Boston: Elsevier Ltd, 2012. 956p. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/245693)
- 12. Gas Turbine Theory / H.Saravanamuttoo [and others]. 6th ed. Harlow: Pearson, 2009.
- 590р. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/245671)
 13. Грабовский А.А. История развития тепловых двигателей: конспект лекций / А.А. Грабовский; Пензенский государственный университет (ПГУ). Пенза: Изд-во ПГУ, 2009. 192с.

(http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/202822)

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Электронно-библиотечная система «Лань» https://e.lanbook.com/;
- 2. Сайт специальности «Тепловые электрические станции» http://www.03-ts.ru/;
- 3. Электронно-библиотечная система ТПУ http://catalog.lib.tpu.ru/;
- 4. Бесплатная электронная библиотека Ивановского государственного энергетического университета http://www.library.ispu.ru/elektronnaya-biblioteka;
- 5. Электронная энциклопедия энергетики http://twt.mpei.ac.ru/ochkov/trenager/trenager.htm;
- 6. сайт кафедры ТЭС Новосибирского государственного технического университета http://tes.power.nstu.ru/;
- 7. Крупнейшая бесплатная электронная интернет библиотека для "технически умных" людей http://www.tehlit.ru/.

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

- 1. Autodesk Inventor Professional 2015 Education;
- 2. Autodesk AutoCAD Mechanical 2015 Education;
- 3. Microsoft Office 2016 Standard Russian Academic;
- 4. PTC Mathcad 15 Academic Floating.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

No	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных	Комплект учебной мебели на 42 посадочных
	занятий всех типов, курсового	мест; Компьютер - 1 шт.; Проектор - 1 шт.
	проектирования, консультаций, текущего	
	контроля и промежуточной аттестации	
	634034 г. Томская область, Томск, пр.	
	Ленина 30, а, учебный корпус №4,	
	аудитория 302	

2.	Аудитория для проведения учебных	Доска аудиторная настенная - 1 шт.; Шкаф
	занятий всех типов, курсового	для одежды - 1 шт.; Стол письменный - 12
	проектирования, консультаций, текущего	шт.; Комплект учебной мебели на 20
	контроля и промежуточной аттестации	посадочных мест; Доска аудиторная
	634034 г. Томская область, Томск, пр.	поворотная - 1 шт.; Компьютер - 20 шт.;
	Ленина, 30а , учебный корпус № 4,	Проектор - 1 шт.
	аудитория 32	
3.	Аудитория для проведения учебных	Доска аудиторная настенная - 1 шт.; Шкаф
	занятий всех типов, курсового	для одежды - 1 шт.; Стол письменный - 10
	проектирования, консультаций, текущего	шт.; Комплект учебной мебели на 12
	контроля и промежуточной аттестации	посадочных мест; Доска аудиторная
	634034 г. Томская область, Томск, пр.	поворотная - 1 шт.; Компьютер - 11 шт.;
	Ленина, 30а , учебный корпус № 4,	Проектор - 1 шт.
	аудитория 101 А	

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 13.03.01 Теплоэнергетика и теплотехника / Агрегаты электростанций и газоперекачивающих систем / Агрегаты газоперекачивающих станций (приема 2020 г., очная форма обучения).

Разработчик(и):

Должность	Подпись	ФИО	
Доцент, к.т.н.	9	Ромашова О.Ю.	

Программа одобрена на заседании НОЦ И.Н. Бутакова (протокол от 26.06.2020 г. № 44).

Заведующий кафедрой -руководитель НОЦ И.Н. Бутакова на правах кафедры, д.т.н., профессор

<u>/</u>A.С. Заворин/

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании НОЦ И.Н. Бутакова (протокол)