МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Директор Инженерной школы энергетики
А.С. Матвеев
«30» июня 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2018 г. ФОРМА ОБУЧЕНИЯ заочная

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ

Направление подготовки	13.03.02 Электроэнергетика и электротехника		
Образовательная программа	Электроэнергетика		
Специализация	Электроснабжение		
Уровень образования	высшее образование - бакалавриат		
Курс	5	семестр	9
Трудоемкость в кредитах (зачетных единицах)	3		
Виды учебной деятельности	Временной ресурс		ной ресурс
		Лекции	10
Контактная (аудиторная)	Практические занятия		4
работа, ч	Лабораторные занятия		6
34000 NE		ВСЕГО	20
	Самосто	эятельная работа,	ч 88
		ИТОГО,	ч 108

Вид промежуточной аттестации	ЭКЗАМЕН	Обеспечивающее подразделение	099
И.о. заведующего кафедрой – руководителя ОЭЭ	A		Ивашутенко А.С.
Руководитель ООП	Billeus		Шестакова В.В.
Преподаватель	4	D.S.	Обухов С.Г.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5.4 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности

Код	Наименование	Индикаторы достижения компетенций		Составляющие результатов освоения (дескрипторы компетенции)	
компетенции	компетенции	Код Наименование индикатора достижения		Код	Наименование
	Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального	И.ОПК(У)-2.1	Применяет математический аппарат исследования функций, линейной алгебры, дифференциального и интегрального исчисления, рядов, дифференциальных уравнений, теории функций комплексного переменного в инженерной деятельности	ОПК(У)-2.1В1	Владеет математическим аппаратом алгебры и дифференциального исчисления функции одной переменной для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач
				ОПК(У)-2.1У1	Умеет применять изученные методы алгебры и анализа для решения стандартных задач
				ОПК(У)-2.131	Знает основные понятия и теоремы линейной и векторной алгебры,
ОПК(У)-2		ематический арат, методы лиза и целирования, ретического и периментального ледования при цении фессиональных	Применяет математический аппарат теории вероятностей и математической статистики в инженерной деятельности	ОПК(У)-2.2В4	Владеет аппаратом математической статистики для проведения теоретического исследования и моделирования физических и химических процессов и явлений, а также, для решения профессиональных задач
	исследования при решении профессиональных			ОПК(У)-2.2У4	Умеет использовать вероятностные и статистические методы для обработки данных
	задач			ОПК(У)-2.234	Знает основные определения, понятия и методы теории вероятности и математической статистики
			Применяет математический аппарат и компьютерные технологии для решения задач расчета и анализа электротехнических объектов	ОПК(У)-2.6В1	Владеет опытом работы с программным обеспечением для моделирования электротехнических устройств
		И.ОПК(У)-2.6		ОПК(У)-2.6У1	Умеет применять типовые программные продукты для решения задач профессиональной деятельности
		ОПК(У)-2	ОПК(У)-2.631	Знает типовые программные продукты для решения задач профессиональной деятельности	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина «Математическое моделирование в системах электроснабжения» относится к блоку 1 «Дисциплины» учебного плана ООП: **Базовая часть. Модуль общепрофессиональных дисциплин**.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Код	Код Наименование	
	C	компетенции
	Способность использовать на практике умения и навыки в организации	
РД 1	исследовательских и проектных работ и проведению экспериментальных	И.ОПК(У)-2.2
	исследований с применением современных средств и методов	
	Применять математические, инженерные знания и компьютерные	
РД 2	технологии для решения задач расчета и анализа электрических	И.ОПК(У)-2.6
	устройств, объектов и систем и оптимизации их параметров.	

	Формулировать цели и задачи научных исследований в соответствии с	
	тенденциями и перспективами развития электроэнергетики, а также	
РД 3	смежных областей науки и техники, обоснованно выбирать	И.ОПК(У)-2.1
	теоретические и экспериментальные методы и средства решения	
	сформулированных задач.	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности ¹	Объем времени, ч.
Раздел (модуль) 1.		Лекции	2
Общие вопросы моделирования.	РД1	Практические занятия	-
Основные положения математической	РД2	Лабораторные работы	-
статистики.		Самостоятельная работа	18
Раздел (модуль) 2. Моделирование	DH1	Лекции	4
элементов и режимов работы систем	РД1	Практические занятия	2
электроснабжения промышленных	РД2	Лабораторные работы	3
предприятий	РД3	Самостоятельная работа	45
D () 2 O		Лекции	4
Раздел (модуль) 3. Основные виды задач	РД2 РД3	Практические занятия	2
в электроэнергетике. Оптимизационные		Лабораторные работы	3
задачи электроснабжения		Самостоятельная работа	45

Содержание разделов дисциплины:

Раздел 1. Общие вопросы моделирования. Основные положения математической статистики.

Предмет дисциплины и ее задачи. Основные термины теории подобия и моделирования. Критерии подобия физических процессов и правила их определения. Индикаторы подобия. Классификация видов подобия и моделирования. История развития моделирования. Основные этапы разработки и создания математических моделей. Особенности инженерных расчетов в электроснабжении. Основные положения математической статистики. Случайные величины и законы их распределения. Числовые характеристики случайных величин.

Темы лекций:

- 1. Общие вопросы моделирования. Основные положения математической статистики. Темы практических занятий:
- 1. Случайные величины и законы их распределения
- 2. Числовые характеристики случайных величин.

Лабораторные работы:

1. Расчет установившегося режима в электрической сети ЭЭС на основе уравнений в форме балансов токов.

Раздел 2. Моделирование элементов и режимов работы систем электроснабжения промышленных предприятий

Математические модели простейших элементов электротехники. Схемы замещения источников питания в переходных и установившихся режимах работы. Схемы замещения элементов электрических сетей. Моделирование электроприемников по статическим и динамическим характеристикам Моделирование установившихся и переходных режимов работы систем электроснабжения промышленных предприятий. Решение систем линейных уравнений. Методы и алгоритмы аналитического описания схем замещения СЭС. Элементы теории графов.

Темы лекций:

- 1. Методы решений систем линейных уравнений.
- 2. Методы и алгоритмы аналитического описания схем замещения СЭС.

 $^{^{1}}$ Общая трудоёмкость контактной работы и виды контактной работы в соответствии учебным планом

Темы практических занятий:

- 1. Расчет и построение эпюр отклонения напряжения.
- 2. Расчет потери мощности и энергии в элементах электрических сетей Лабораторные работы:
- 1. Моделирование схемы электроснабжения для расчёта токов короткого замыкания в сети выше 1000 B
- 2. Моделирование схемы электроснабжения для расчёта токов короткого замыкания в сети до 1000 B
- 3. Моделирование схемы электроснабжения для расчёта токов короткого замыкания в сети выше 1000 В в среде Electronics Workbench
- 4. Моделирование схемы электроснабжения для расчёта токов короткого замыкания в сети до 1000 В в среде Electronics Workbench

Раздел 3. Основные виды задач в электроэнергетике. Оптимизационные задачи электроснабжения

Понятия терминов математическое программирование, целевая функция, ограничения и граничные условия. Назначение и область применения оптимизационных задач. Методы оптимизационных решения задач. Графическое решение задач линейного программирования. Понятие критерия оптимальности. Математическая модель оптимизационной задачи. Транспортная задача и ее особенности применительно к задачам электроснабжения. Особенности транспортной задачи с учетом транзита мощности. Метод множителей Лагранжа. Алгебраическое преобразование систем линейных уравнений. Поиск допустимого и оптимального решений. Алгоритм симплекс-метода. Алгоритмы методов потенциалов и распределительного.

Темы лекций:

- 1. Основные виды задач в электроэнергетике. Оптимизационные задачи электроснабжения.
- 2. Методы и алгоритмы аналитического описания схем замещения СЭС.

Темы практических занятий:

- 1. Основные методы решения оптимизационных задач.
- 2. Расчет допустимого и оптимального решения оптимизационных задач в электроэнергетики.
- 3. Транспортная задача.
- 4. Транспортная задача с учетом транзита мощности.

Лабораторные работы:

- 1. Расчет установившегося режима в электрической сети ЭЭС на основе уравнений в форме баланса мощностей
- 2. Определение оптимального количества трансформаторов цеховых подстанций
- 3. Оптимальное распределение компенсирующих устройств в радиальной схеме электроснабжения
- 4. Оптимальное распределение компенсирующих устройств в магистральной схеме электроснабжения
- 5. Оптимальное проектирование схемы электроснабжения.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по тематикам практических и лабораторных работ;
- Изучение тем, вынесенных на самостоятельную проработку;
- Подготовка к практическим работам;

- Выполнение курсовой работы;
- Исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Обухов, Сергей Геннадьевич. Математическое моделирование в системах электроснабжения: учебное пособие / С. Г. Обухов; Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2014. 84 с. Схема доступа: http://portal.tpu.ru:7777/SHARED/s/SEROB/uchebrab3/Tab/UP.pdf
- 2. Обухов, Сергей Геннадьевич. Математическое моделирование в системах электроснабжения методические указания к выполнению лабораторных работ по курсу "Математическоемоделирование в системах электроснабжения" для студентов 3 курса, обучающихся понаправлению 140200 "Электроэнергетика": / С. Г. Обухов ; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2011 Ч. 1. 1 компьютерный файл (pdf; 956 KB). 2011. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/m011.pdf
- 3. Обухов, Сергей Геннадьевич. Математическое моделирование в системах электроснабжения методические указания к выполнению лабораторных работ по курсу "Математическоемоделирование в системах электроснабжения" для студентов 3 курса, обучающихся понаправлению 140200 "Электроэнергетика": / С. Г. Обухов ; Национальный исследовательский Томский политехнический университет (ТПУ) . Томск : Изд-во ТПУ , 2011 Ч. 2 . 1 компьютерный файл (pdf; 771 KB). 2011. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/m012.pdf
- 4. Шутов, Евгений Алексеевич. Программное обеспечение задач электроснабжения : электронный курс [Электронный ресурс] / Е. А. Шутов; Национальный исследовательский Томский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра электроснабжения промышленных предприятий (ЭПП). Электрон. дан.. Томск: TPU Moodle, 2014. Заглавие с экрана. Доступ по логину и паролю.. Схема доступа: http://design.lms.tpu.ru/enrol/index.php?id=141
- 5. Веников, Валентин Андреевич. Теория подобия и моделирования: применительно к задачам электроэнергетики: учебное пособие / В. А. Веников, Г. В. Веников. 3-е изд., перераб. и доп.. Москва: Высшая школа, 1984. 439 с.. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C33951

Дополнительная литература:

1. Сумарокова, Людмила Петровна. Электроснабжение промышленных предприятий: учебное пособие [Электронный ресурс] / Л. П. Сумарокова; Национальный исследовательский Томский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра электроснабжения промышленных предприятий (ЭПП). — 1 компьютерный файл (pdf; 3.9 MB). — Томск: Изд-во ТПУ, 2012. — Заглавие с

- титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m107.pdf
- Александр Васильевич. Компенсация реактивной 2. Кабышев. электроустановках промышленных предприятий : учебное пособие [Электронный Кабышев; Национальный исследовательский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра электроснабжения промышленных предприятий (ЭПП). — 1 компьютерный файл (pdf; 3.4 MB). — Томск: Изд-во ТПУ, 2012. — Заглавие с титульного экрана. — Электронная версия печатной публикации. — Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m333.pdf
- 3. Кабышев, Александр Васильевич. Расчет и проектирование систем электроснабжения объектов и установок : учебное пособие [Электронный ресурс] / А. В. Кабышев, С. Г. Обухов; Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 11769 КВ). Томск: Изд-во ТПУ, 2006. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из сети НТБ ТПУ. Системные требования: Adobe Reader. Схема доступа: https://portal.tpu.ru/SHARED/i/IOM/liter/Tab/M_Kabishev_Obuhov_Raschet.pdf
- 4. Кабышев , Александр Васильевич . Электроснабжение объектов [Электронный ресурс]учебное пособие: / А. В. Кабышев ; Томский политехнический университет (ТПУ) . Томск : Изд-во ТПУ , 2007- Ч. 3: Защиты в электроустановках до 1000 В . 1 компьютерный файл (pdf; 1.2 МВ). 2010. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m348.pdf
- 5. Кабышев, Александр Васильевич. Электроснабжение промышленных предприятий = Electrical supply of industrial enterprises: лабораторный курс: учебное пособие [Электронный ресурс] / А. В. Кабышев, А. И. Муравлёв, Г. А. Низкодубов; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 1.3 MB). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Электронная версия печатной публикации. Текст на английском языке. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m040.pdf
- 6. Фикс, Наталья Павловна. Математическое моделирование в высоковольтной электротехнике: учебное пособие [Электронный ресурс] / Н. П. Фикс; Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 1.3 MB). Томск: Изд-во ТПУ, 2009. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m135.pdf
- 7. Самарский, Александр Андреевич. Математическое моделирование: Идеи. Методы. Примеры / А. А. Самарский, А. П. Михайлов. Москва: Наука Физматлит, 1997. 320 с. ISBN 5020151866. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C5400
- 8. Даценко, Владимир Андреевич. Математическое моделирование в системах электроснабжения: учебное пособие для вузов / В. А. Даценко, В. Т. Гетманов, А. Н. Выблов; Томский политехнический университет (ТПУ), Институт дистанционного образования (ИДО). Томск: Изд-во ТПУ, 2003. 120 с.: ил.. Библиогр.: с.118.. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C209241
- 9. Бурулько, Лев Кириллович. Математическое моделирование в электротехнике : учебное пособие / Л. К. Бурулько, Е. В. Овчаренко; Томский политехнический

университет. — Томск: Изд-во ТПУ, 2003. — 100 с.: ил.. — Библиогр.: с. 99-100.. — **ISBN** 5-98298-007-2.

http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C59713

10. Электрические системы; Математические задачи электроэнергетики : учебник для вузов / В. А. Веников, Э. Н. Зуев, И. В. Литкенс и др.; Под ред. В. А. Веникова. — 2-е изд., перераб. и доп.. — Москва: Высшая школа, 1981. — 288 с.: ил.. — Библиогр.: с. 285-286...

http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C54172

6.2. Информационное и программное обеспечение

- 1. Официальный сайт компании National Instruments / [Электронный ресурс]. Режим доступа http://www.ni.com/company/
- 2. Официальный сайт компании Microsoft / [Электронный ресурс] Режим доступа http://of6ce.microsoft.conv/
- 3. Model. Exponenta. Ru сайт о моделировании и исследовании: систем, объектов, технических процессов и физических явлений / [Электронный ресурс]. — Режим доступа // http://model.exponenta.ru/

Лицензионное программное обеспечение (в соответствии с Перечнем лицензионного программного обеспечения ТПУ):

- 1. Microsoft Office Академическая лицензия
- 2. Electronics Workbench 5.12 Академическая лицензия
- 3. Mathcad 15 Академическая лицензия
- 4. MATLab Simulink Академическая лицензия

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, аудитория 328	Учебная аудитория: - моноблок – 1 шт., - проектор – 1 шт., - доска – 1 шт.
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, аудитория 348	Учебная аудитория: - компьютер – 1 шт., - проектор – 1 шт., - доска – 1 шт.
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634034 г. Томская область, Томск, Усова улица, д.7, учебный корпус №8, аудитория 119	Компьютерный класс: - компьютер – 16 шт., - доска – 1 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 13.03.02 Электроэнергетика и электротехника / специализации «Электроснабжение» (приема 2018 г., заочная форма обучения²).

² Год приема и форма обучения – на титульном листе

Разработчик(и):

Должность	ФИО
Профессор ОЭЭ ИШЭ	С.Г. Обухов

Программа одобрена на заседании Отделения электроэнергетики и электротехники (протокол от \ll 22» июня 2018 г. №7).

И.о. заведующего кафедрой — руководителя ОЭЭ на правах кафедры к.т.н, доцент

А.С.Ивашутенко

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании ОЭЭ протокол
2018/2019 учебный год	1. Изменена система оценивания.	От 27.08.18 №1