МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ШБИП

Чайковский Д.В. 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ _2018___ г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

ФИЗИКА 2.1

Направление подготовки/	14.05.02 Атомные станции: проектирование,			
специальность	эксплуатация и инжиниринг			
Образовательная программа	Атомные станции: проектирование, эксплуатация			
(направленность (профиль))	и инжиниринг			
Специализация	"Π	роектировани	е и	эксплуатация атомных
			ста	нций''
Уровень образования	высшее	е образование -	спе	ециалитет
Курс	2	семестр	3	
Трудоемкость в кредитах				6
(зачетных единицах)				
Виды учебной деятельности	Временной ресурс		ной ресурс	
		Лекции		32
Контактная (аудиторная)	Практические занятия		Я	32
работа, ч	Лабораторные занятия		Я	16
	ВСЕГО			80
C	Самостоятельная работа, ч		Ч	136
	ИТОГО, ч		Ч	216
ИТОГО, ч		Ч	216	

Вид промежуточной	Экзамен	Обеспечивающее	ОЕН ШБИП
аттестации		подразделение	
За. кафруководитель ОЕН		(Times	Шаманин И.В.
Руководитель ООП		ph	Воробьев А.В.
Преподаватель		Dr	Кравченко Н.С.

2020 г.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименов	Составляющие результатов освоения (дескрипторы		
компетен	ание	компетенции)		
ции	компетенц ии	Код Наименование		
		ОПК(У)-1.В9	Владеет опытом анализа информационных источников, том числе интернет- источников	
		ОПК(У)- 1.В10	Владеет опытом элементарных навыков в постановке эксперимента и исследованиях	
	Способностью решать задачи профессиональн	ОПК(У)- 1.В11	Владеет опытом анализа результатов решения задач, выполненных лабораторных работ, правильного оформления и анализа графического материала, сравнения с известными процессами, законами, постоянными	
	ой деятельности на основе информационно	ОПК(У)- 1.В12	Владеет опытом оценки погрешности измерений, нахождения точных ответов на поставленные вопросы, использования компьютерных средств обработки информации	
ОПК(У)-1	й культуры с применением	ОПК(У)- 1.У13	Умеет самостоятельно находить решения поставленной задачи	
3(*) -	информационно -	ОПК(У)- 1.У14	Умеет выбирать закономерность для решения задач, исходя из анализа условия	
	коммуникацион ных технологий и с учетом	ОПК(У)- 1.У15	Умеет объяснять на уровне гипотез отклонения полученных экспериментальных данных от известных теоретических и экспериментальных зависимостей	
	основных требований	ОПК(У)- 1.У22	Умеет оценить границы применимости классической электродинамики	
	информационно й безопасности	ОПК(У)- 1.322	Знает фундаментальные законы электродинамики	
		ОПК(У)- 1.323	Знает основные физические теории электродинамики, позволяющие описать явления электродинамики, и пределы применимости этих теорий	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы .

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Компетенция	
Код	Наименование	компетенция
РД 1	Применять знания общих законов, теорий, уравнений, методов	ОПК(У)-1
	физики при решении задач в профессиональной деятельности	
РД 2	Выполнять физический эксперимент с привлечением методов	ОПК(У)-1
	математической статистики и ИТ	
РД 3	Владеть методами теоретического и экспериментального	ОПК(У)-1
	исследования, методами поиска и обработки информации,	
	методами решения задач с привлечением полученных знаний	
РД 4	Владеть основными приемами обработки и анализа	ОПК(У)-1
	экспериментальных данных, полученных при теоретических	
	и экспериментальных исследованиях с использованием ПК и	
	прикладных программных средств компьютерной графики	

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел (модуль) 1.	РД1-РД4	Лекции	14
Электростатика		Практические занятия	16
_		Лабораторные занятия	8
		Самостоятельная работа	68
Раздел (модуль) 2.	РД1-РД4	Лекции	18
Электромагнетизм. Колебания		Практические занятия	16
и волны		Лабораторные занятия	8
		Самостоятельная работа	68

Содержание разделов дисциплины:

Раздел 1. Электростатика

Электрической заряд и его свойства. Закон Кулона Электрическое поле. Напряженность электрического поля. Поле диполя. Закон Гаусса в интегральной форме и дифференциальной форме, применение теоремы к расчету полей. Работа, потенциал, связь напряженности и потенциала. Проводники и диэлектрики. Закон Гаусса для вектора электростатической индукции. Электроемкость проводников. Электрический ток. Условие существования тока. Закон Ома в дифференциальной форме. Закон Ома для полной цепи. Классическая теория электропроводности металлов и ее затруднения. Электропроводность газов. Типы самостоятельных разрядов: тлеющий, коронный, искровой, дуговой. Понятие о плазме. Электропроводность плазмы. Ток в вакууме. Закон Богуславского-Лэнгмюра. Контактные явления.

Темы лекций:

- Лекция 1. Введение. Электрический заряд и его свойства. Методы измерения электрического заряда
- Лекция 2. Электростатическое поле в вакууме.
- Лекция 3. Теорема Гаусса и ее применение
- Лекция 4. Работа, потенциал, связь напряженности и потенциала
- Лекция 5. Проводники в электрическом поле. Энергия поля
- Лекция 6. Диэлектрики в электрическом поле
- Лекция 7. Диэлектрики в электрическом поле. Поле на границе диэлектриков
- Лекция 8. Постоянный ток

Темы практических занятий:

- 1. Закон Кулона. Поле точечного заряда.
- 2. Поле распределенного заряда
- 3. Теорема Гаусса и ее применение
- 4. Работа, потенциал, связь напряженности и потенциала.
- 5. Проводники в электрическом поле. Емкость. Энергия поля.
- 6. Диэлектрики в электрическом поле. Поляризация диэлектриков
- 7. Движение заряженных частиц в электрическом поле
- 8. Законы постоянного тока. Расчет электрических цепей

Названия лабораторных работ:

- 1. Моделирование и исследование электрических полей.
- 2. Исследование зависимости сопротивления металлов от температуры и определение температурного коэффициента сопротивления металлов.
- 3. Измерения электроемкости с помощью мостика Соти.
- 4. Определение заряда иона водорода.
- 5. Исследование температурной зависимости сопротивления полупроводников и определение энергии активации проводимости.
- 6. Исследование термоэлектронной эмиссии и определение работы выхода электрона из металла.
- 7. Определение удельного заряда электрона с помощью вакуумного диода.
- 8. Определение горизонтальной составляющей напряженности магнитного поля Земли
- 9. Исследование полупроводниковых приборов.
- 10. Измерение напряженности магнитного поля соленоида
- 11. Снятие кривой намагничения и определение характеристик ферромагнетика.
- 12. Исследование плазмы положительного столба тлеющего разряда
- 13. Измерение больших сопротивлений и емкостей методом релаксационных колебаний
- 14. Измерение логарифмического декремента и добротности колебательного контура.
- 15. Изучение вынужденных электромагнитных колебаний в параллельном колебательном контуре.
- 16. Распределение Максвелла термоэлектронов по скоростям
- 17. КЭ-13. Исследование плазмы положительного столба тлеющего разряда.
- 18. Мод Э-03. Электростатическое поле.
- 19. Мод Э-04. Движение заряженной частицы в кулоновском поле.

Раздел 2. Электромагнетизм. Колебания и волны

Магнитное поле. Вектор магнитной индукции. Поток вектора магнитной индукции. Закон Гаусса для магнитного потока в интегральной и дифференциальной формах. Закон Био-Савара-Лапласа и его применение. Закон полного тока в интегральной форме и его применение. Ротор векторной функции. Закон полного тока в дифференциальной форме. Действие магнитного поля на проводники с током и заряженные частицы. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции, самоиндукции и взаимной индукции. Энергия магнитного поля. Магнетики. Понятие о колебательном движении. Гармонические колебания, затухающие и вынужденные колебания. Волны, электромагнитные волны.

Темы лекций:

Лекция 9. Магнитное поле тока. Закон Био-Савара-Лапласа.

Лекция 10. Закон полного тока и его применение

Лекция 11. Сила Лоренца и сила Ампера

Лекция 12. Магнитное поле в веществе

Лекция 13. Электромагнитная индукция

Лекция 14. Гармонические ЭМ колебания. Сложение колебаний

Лекция 15.. Затухающие и вынужденные ЭМ колебания

Лекция 16. Уравнения Максвелла

Темы практических занятий:

1. Магнитное поле тока. Закон Био-Савара-Лапласа. Закон полного тока

- 2. Действие магнитных полей на проводники и контуры с током
- 3. Действие магнитных полей на движущиеся заряженные частицы.
- 4. Электромагнитная индукция. Энергия магнитного поля
- 5. Гармонические колебания. Сложение колебаний
- 6. Затухающие и вынужденные колебания.
- 7. Электромагнитные колебания
- 8. Контрольная работа

Названия лабораторных работ:

- 1. Определение горизонтальной составляющей напряженности магнитного поля Земли.
- 2. Измерение напряженности магнитного поля соленоида.
- 3. Снятие кривой намагничения и определение характеристик ферромагнетика.
- 4. КЭ-13. Исследование плазмы положительного столба тлеющего разряда.
- 5. Измерение больших сопротивлений и емкостей методом релаксационных колебаний.
- 6. Измерение логарифмического декремента и добротности колебательного контура.
- 7. Определение скорости звука, модуля Юнга и внутреннего трения акустическим метолом
- 8. Резонанс токов.
- 9. МодЭ-01. Движение заряженной частицы во взаимно перпендикулярных электрическом и магнитном полях.
- 10. Мод Э-02. Движение заряженной частицы в параллельных электрическом и магнитном полях
- 11. МодК-01. Свободные гармонические колебания
- 12. Исследование магнитных полей с помощью измерительной катушки
- 13. КЭ-05. Распределение Максвелла термоэлектронов по скоростям
- 14. МодК-02. Затухающие колебания
- 15. МодК-03. Сложение перпендикулярных колебаний.
- 16. МодК-04. Сложение колебаний. Биения
- 17. МодК-06. Гармонический анализ
- 18. МодК-07. Связанные колебания.
- 19. МодК-05. Вынужденные колебания.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение индивидуальных заданий и контролирующих мероприятий, виртуальных лабораторных работ и др.);
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий, отчетов по лабораторным работам
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Подготовка к оценивающим мероприятиям

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

- 1. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. 14-е изд., стер. Санкт-Петербург: Лань, 2018. Том 2: Электричество и магнетизм. Волны. Оптика. 500 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/98246 (дата обращения: 12.03.2018) Режим доступа: из корпоративной сети ТПУ.
- 2. Сивухин, Д. В. Общий курс физики: Для вузов. В 5 т. Т.ІІІ. Электричество: учебное пособие / Д. В. Сивухин. 6-е изд., стер. Москва: ФИЗМАТЛИТ, 2015. 656 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/72015 (дата обращения: 12.03.2018) Режим доступа: из корпоративной сети ТПУ
- 3. Детлаф А. А. Курс физики: учебник в электронном формате / А. А. Детлаф, Б. М. Яворский. 9-е изд. стер. Москва: Академия, 2014. URL: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-30.pdf (дата обращения: 12.03.2018) Режим доступа: из сети НТБ ТПУ.-Текст: электронный
- 4. Трофимова Т. И. Курс физики: учебник в электронном формате / Т. И. Трофимова. 20-е изд., стер. Москва: Академия, 2014. Доступ из корпоративной сети ТПУ. URL: http://www.lib.tpu.ru/fulltext2/m/2014/FN/fn-98.pdf (дата обращения: 12.03.2018) _-Режим доступа: из корпоративной сети ТПУ.-Текст: электронный

Дополнительная литература

- 1. Иродов, И.Е. Электромагнетизм. Основные законы: учебное пособие / И.Е. Иродов. 10-е изд. Москва: Лаборатория знаний, 2017. 322 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/94160 (дата обращения: 12.03.2018) Режим доступа: из корпоративной сети ТПУ- Текст: электронный
- 2. Каликинский, И. И. Электродинамика: учебное пособие / И.И. Каликинский. 3-е изд., перераб. и доп. Москва: НИЦ ИНФРА-М, 2014. 159 с. (Высшее образование. Магистратура).-URL: http://znanium.com/catalog/product/406832 (дата обращения: 12.03.2018) -Режим доступа: из корпоративной сети ТПУ.- Текст: электронный
- 3. Иродов, И.Е. Волновые процессы. Основные законы: учебное пособие / И.Е. Иродов. 7-е изд. (эл.). Москва: Лаборатория знаний, 2015. 265 с.- Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/66334 (дата обращения: 12.03.2018) Режим доступа: из корпоративной сети ТПУ
- 4. Кравченко Н. С. Лабораторный практикум по изучению моделей физических процессов на компьютере. Механика. Жидкости и газы. Колебания и волны. Электричество и магнетизм: учебное пособие / Н. С. Кравченко, О. Г. Ревинская. . Томск: Изд-во ТПУ, 2007. . Доступ из сети НТБ ТПУ. URL: http://www.lib.tpu.ru/fulltext3/m/2008/m65.pdf. (дата обращения: 12.03.2018) Режим доступа: из сети НТБ ТПУ. Текст: электронный

6.2. Информационное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Электронный курс «Физика 2» https://stud.lms.tpu.ru/course/view.php?id=1927

 Материалы представлены 16 модулями. Каждый модуль содержит материалы для подготовки к практическому занятию, к лекции, варианты индивидуальных домашних заданий для самостоятельной работы, тесты.
- 2. Методические указания к лабораторным работам. Режим доступа http://uod.tpu.ru/webcenter/portal/oen/method?_adf.ctrl-state=13nno0xod7_4

3. Методические указания к практическим занятиям. Режим доступа: http://uod.tpu.ru/webcenter/portal/oen/method?_adf.ctrl-state=13nno0xod7_4

Лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

1.Office 2007 Standard Russian Academic; Office 2013 Standard Russian Academic; Office 2016 Standard Russian Academic; Microsoft Office 2010 Professional Plus Russian Academic

- 2. LibreOffice.
- 3. Cisco Webex Meetings.
- 4. Zoom.
- 5. Adobe Acrobat Reader DC.
- 6. Adobe Flash Player.
- 7. Google Chrome.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Ленина проспект, д. 43, 206	Компьютер – 1 шт.; Проектор - 1 шт.; Телевизор - 1 шт. Комплект учебной мебели на 50 посадочных мест
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Ленина проспект, д. 43, 117	Комплект учебной мебели на 40 посадочных мест; Шкаф общелабораторный - 3 шт.; Стол лабораторный - 23 шт.
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634034, Томская область, г. Томск, Усова улица, 7, 331	Компьютер - 1 шт.; Телевизор - 1 шт. Доска аудиторная настенная - 1 шт.; Комплект учебной мебели на 44 посадочных мест

Рабочая программа составлена на основе Общей характеристики образовательной программы по специальности

14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг (приема 2018 г., очная форма обучения).

Pa3	работчик(и)):

Должность	Подпись	ФИО
Доцент	Br	Кравченко Н.С.

Программа одобрена на заседании ОЕН Ц	ЦБИП (протокол от « <u>22</u> » <u>05</u> 2018 <u>г</u> .
<i>N</i> <u>o</u> _4).	
Зав. кафруководитель ОЕН ШБИП д.т.н, профессор	/Шаманин И.В./ подпись
	Подпиев

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Протокол
2020/2021 учебный год	1. Изменена форма документов основных образовательных программ, в том числе УМК дисциплин	Приказ по ТПУ №127-7/об от 06.05.2020