ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ ПРИЕМ 2018 г.

ФОРМА ОБУЧЕНИЯ очная

Уравнения математической физики 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг Направление подготовки/ специальность Атомные станции: проектирование, эксплуатация и инжиниринг Образовательная программа (направленность (профиль)) Специализация Проектирование и эксплуатация атомных станций Уровень образования высшее образование - специалитет Kypc 3 5 семестр 3 Трудоемкость в кредитах (зачетных единицах) Лидер А.М. Заведующий кафедрой руководитель ОЭФ на правах кафедры Воробьев А.В. Руководитель ООП

Преподаватель

Лисок А.Л.

1. Роль дисциплины «Уравнения математической физики» в формировании компетенций выпускника:

Элемент	Семестр	Код компетенции	Наименование компетенции	Составляющие результатов освоения (дескрипторы компетенций)	
образовательной программы (дисциплина, практика, ГИА)				Код	Наименование
Уравнения математической физики	5	ПК(У)-2	способностью проводить математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований	ПК(У)- 2.В3	Владеет навыками практического применения методов математической физики в профессиональной области
				ПК(У)- 2.У3	Умеет применять методы математической физики в профессиональной области
				ПК(У)- 2.33	Знает методы математической физики

2. Показатели и методы оценивания

П	ланируемые результаты обучения по дисциплине	Код контролируемой	Наименование раздела дисциплины	Методы оценивания
Код	Наименование	компетенции (или ее		(оценочные мероприятия)
DH1	2	части)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2
РД1	Знает современные методы решения уравнений		Методы решения задач математической физики без	Защита отчета
	математической физики	ПК(У)-2	использования специальных функций. Методы	
		TIK(3)-2	решения задач математической физики с	
			использованием специальных функций	
РД2	Умеет составлять и решать уравнения в частных		Дифференциальные уравнения в частных	Защита отчета
	производных		производных 1-го и 2-го порядков в задачах	
		ПК(У)-2	математической физики. Методы решения задач	
			математической физики с использованием	
			специальных функций.	
РД3	Знает физические задачи, приводящие к		Дифференциальные уравнения в частных	Защита отчета
	уравнениям в частных производных,	ПК(У)-2	производных 1-го и 2-го порядков в задачах	
	специальные функции математической физики		математической физики. Специальные функции.	

3. Шкала оценивания

Порядок организации оценивания результатов обучения в университете регламентируется отдельным локальным нормативным актом – «Система оценивания результатов обучения в Томском политехническом университете (Система оценивания)» (в действующей редакции). Используется балльно-рейтинговая система оценивания результатов обучения. Итоговая оценка (традиционная и литерная) по видам учебной деятельности (изучение дисциплин, УИРС, НИРС, курсовое проектирование, практики) определяется суммой баллов по результатам текущего контроля и промежуточной аттестации (итоговая рейтинговая оценка - максимум 100 баллов).

Распределение основных и дополнительных баллов за оценочные мероприятия текущего контроля и промежуточной аттестации устанавливается календарным рейтинг-планом дисциплины.

Рекомендуемая шкала для отдельных оценочных мероприятий входного и текущего контроля

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания, отличные умения и владение опытом практической деятельности,
		необходимые результаты обучения сформированы, их качество оценено количеством баллов, близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество ни одного из них не оценено минимальным количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности, необходимые результаты обучения сформированы, качество некоторых из них оценено минимальным количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям

Шкала для оценочных мероприятий и зачета

Степень сформированности результатов обучения	Балл	Соответствие традиционной оценке	Определение оценки
90% ÷ 100%	90 ÷ 100	«Отлично»	Отличное понимание предмета, всесторонние знаний, отличные умения и владение опытом практической деятельности
70% ÷ 89%	70 ÷ 89	«Хорошо»	Достаточно полное понимание предмета, хорошие знания, умения и опыт практической деятельности
55% ÷ 69%	55 ÷ 69	«Удовл.»	Приемлемое понимание предмета, удовлетворительные знания, умения и опыт практической деятельности
0% ÷ 54%	0 ÷ 54	«Неудовл.»	Результаты обучения не соответствуют минимально достаточным требованиям
55% ÷ 100%	55 ÷ 100	«Зачтено»	Результаты обучения соответствуют минимально достаточным требованиям
0% ÷ 54%	$0 \div 54$	«Не зачтено»	Результаты обучения не соответствуют минимально достаточным требованиям

4. Перечень типовых заданий

	Оценочные мероприятия	Примеры типовых контрольных заданий
1.	Контрольная работа	Вопросы:
		1. Найти оригинал по известному изображению:
		a) $F(p) = \frac{1}{p(p-1)(p^2+4)}$
		6) $F(p) = \frac{1}{p^2 + 1}$
		B) $F(p) = \frac{1}{p^2 + 4p + 5}$
		2. Пользуясь второй теоремой разложения или с помощью разложения на простейшие дроби, найти

	Оценочные мероприятия	Примеры типовых контрольных заданий
		оригиналы для заданных изображений:
		a) $F(p) = \frac{p}{p^2 + 4p + 5}$ 6) $F(p) = \frac{p+2}{(p^2 + 4)(p+1)(p-2)}$
		p^2+4p+5 $p+2$
		$6)F(p) = \frac{p-2}{(p^2+4)(p+1)(p-2)}$
		(r · · · · · · · · · · · · · · · · · · ·
2.	Защита лабораторной работы	Вопросы:
		1. Поставить краевую задачу о малых поперечных колебаниях струны в среде с сопротивлением,
		пропорциональным скорости, пред- полагая, что концы струны закреплены жестко.
		2.Поставить краевую задачу о поперечных колебаниях тяжелой струны относительно вертикального
		положения равновесия, если ее верхний конец ($x = 0$) жестко закреплен, а нижний свободен.
3.	Итоговая контрольная работа	Вопросы:
		1.Построить функцию Грина для следующих областей в R ³ :
		а) двугранный угол: $y > 0$, $z > 0$;
		б) октант: $x > 0$, $y > 0$, $z > 0$;
		в) полушар: $x^2 + y^2 + z^2 < a^2$, $z > 0$;
		Γ) четверть шара: $x^2 + y^2 + z^2 < a^2$, $y > 0$, $z > 0$.
		2. Найти решение задач Коши для уравнения теплопроводности:
		$\int \partial u = \partial^2 u$
		$\begin{cases} \frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} \right), -\infty < x < \infty, t > 0 \\ u(x, 0) = \varphi(x) = \begin{cases} 1, 0 \le x \le l \\ 0, x < 0, x > l, l > 0 \end{cases}$
		$\begin{pmatrix} 1 & 0 < r < l \end{pmatrix}$
		$u(x,0) = \varphi(x) = \begin{cases} 1, 0 \le x \le t \\ 0, x < 0, x > 1, t > 0 \end{cases}$
		$(0,\lambda<0,\lambda>l,l>0$

5. Методические указания по процедуре оценивания

	Оценочные мероприятия	Процедура проведения оценочного мероприятия и необходимые методические указания
1.	Контрольная работа	Письменные ответы на вопросы по пройденным разделам. В билете четыре вопроса, каждый по
		25% от максимальной оценки за контрольную работу.
2.	Защита лабораторной работы	Письменные и устные ответы на вопросы по выполненной лабораторной работе.
3.	Итоговая контрольная работа	Проводится в период сессии. Обучающемуся предлагается посменной форме ответить на
		вопросы. При необходимости (спорная оценка), обучающемуся могут быть заданы
		дополнительные вопросы.