АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ ПРИЕМ 2018 г. ФОРМА ОБУЧЕНИЯ очная

Ядерная физика

Направление подготовки/ специальность	14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг			
Образовательная программа (направленность (профиль))	Атомные станции: проектирование, эксплуатация и инжиниринг			
Специализация	Проектирование и эксплуатация атомных станций			
Уровень образования	высшее образование - специалитет			
Курс	3	сем	естр	5
Трудоемкость в кредитах (зачетных единицах)	3			
Виды учебной деятельности	Временной ресурс			
	Лекции		16	
Контактная (аудиторная)	Практические занятия		16	
работа, ч	Лабораторные занятия		16	
	ВСЕГО		48	
Ca	Самостоятельная работа, ч			60
	ТИ	ОГО, ч		108

Вид промежуточной	Экзамен	Обеспечивающее	ДТКО
аттестации		подразделение	

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5. Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код	Наименование компетенции	Составляющие результатов освоения (дескрипторы компетенций)		
компетенции		Код	Наименование	
	способностью анализировать нейтронно-физические,	ПК(У)- 16.В1	Владеет опытом применения основных законов ядерной физики при анализе процессов в ядерных реакторах	
ПК(У)-16	технологические процессы и алгоритмы контроля, управления	11K(V)- 16 VI	Умеет использовать основные законы, соотношения ядерной физики, модели ядер для решения задач из области ядерной физики	
	и защиты ЯЭУ с целью обеспечения их эффективной и безопасной работы	ПК(У)- 16.31	Знает строение и свойства атомов, атомных ядер, классификацию элементарных частиц, основные закономерности ядерно-физического взаимодействия	

2. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины студентом должны быть достигнуты следующие

результаты:

Планируемые результаты обучения по дисциплине		Компетен
Код	Наименование	ция
РД1	Использовать методологические основы современной картины мира	
	для научного познания и творчества, выявлять естественнонаучную	ПК(У)-16
	сущность проблем, возникающих в профессиональной деятельности	
РД2	Использовать системный подход в профессиональной деятельности,	
	ставить цели и выбирать пути их достижения, обобщать,	ПК(У)-16
	анализировать, критически осмысливать, систематизировать	
РД3	Использовать глубокие математические, естественнонаучные знания в	
	профессиональной деятельности с применением математического	ПК(У)-16
	моделирования объектов и процессов в области проектирования и	11K(3)-10
	эксплуатации АС	

3. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый	Виды учебной деятельности	Объем
	результат		времени, ч.
	обучения по		
D 40	дисциплине	п	
Раздел 1. Основные свойства ядер	РД1, РД2,	Лекции	6
	РД3	Практические занятия	6
		Лабораторные занятия	6
		Самостоятельная работа	20
Раздел 2. Радиоактивность	РД1, РД2,	Лекции	6
	РД3	Практические занятия	6
		Лабораторные занятия	6
		Самостоятельная работа	20
Раздел 3. Ядерные реакции, реакции	РД1, РД2,	Лекции	4
деления	РД3	Практические занятия	4
		Лабораторные занятия	4
		Самостоятельная работа	20

4. Учебно-методическое и информационное обеспечение дисциплины

4.1 Учебно-методическое обеспечение

Основная литература:

- 1. Сивухин Д.В., Общий курс физики. Атомная и ядерная физика. Том 5. Атомная и ядерная физика: Учеб. пособие для вузов / Сивухин Д. В. 3-е изд., стер. М. : ФИЗМАТЛИТ, 2008. 784 с. ISBN 978-5-9221-0645-0. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785922106450.html (дата обращения: 08.12.2020). Режим доступа: по подписке.
- 2. Красников, П. В. Расчеты физических характеристик ядерных реакторов : учебное пособие / П. В. Красников, С. В. Столотнюк, Я. Д. Столотнюк. Москва : МГТУ им. Н.Э. Баумана, 2014. 95 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/58558 (дата обращения: 22.07.2020). Режим доступа: для авториз. пользователей.

Дополнительная литература:

1. Тарасенко, Ю. Н.. Ионизационные методы дозиметрии высокоинтенсивного ионизирующего излучения [Электронный ресурс] / Тарасенко Ю. Н.. — Москва: Техносфера, 2013. — 264 с.- Текст: электронный// Лань : электронно-библиотечная система. — URL: http://e.lanbook.com/books/element.php?pl1_id=73525 (дата обращения: 17.08.2020). — Режим доступа: для авториз. пользователей.

4.2 Информационное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Национальная лаборатория Оак-Риджа http://www.ornl.gov/sci/isotopes/catalog.html
 - 2. Центр ядерных данных JAEA http://www.ndc.tokai.jaeri.go.jp/index.html
 - 3. Физический отдел ОРНЛ http://www.phy.ornl.gov/astrophysics/astro.html
- 4. Изотопные данные Урана 238 http://periodictable.com/Isotopes/092.238/index.html

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

- 1. При освоении теоретических разделов дисциплины используются: технические средства аудитории с АСУ ПДС (компьютеры);
 - 2. программное обеспечение АСУ ПДС;
 - 3. Windows 7/8/10;
 - 4. MS Office 2010/2013/2015;
 - 5. Matlab;
 - 6. Document Foundation LibreOffice;
 - 7. Cisco Webex Meetings\$
 - 8. Zoom Zoom;
 - 9. Mathcad.