

APPROVED BY
Director of Power Engineering
School//////
A.S. Matveev
« <u>30</u> » <u>06</u> 2020

SYLLABUS FOR

"Statistical Methods in Economics"

Field of study: 13.04.02 "Electric Power and Electrical Engineering"

Program name: "Electric Generation and Transportation"

Level of study: Master

Year of admission: 2019

Semester, year: semester - 3; 2020.

ECTS: 4

Total Hours: 144

Contact Hours: 32

- Lectures: 8
- Labs: 0
- **Practical experience:** 24

Assessment: credit-test

Type of intermediate certification: none

Department: DEPARTMENT OF ELECTRIC POWER AND ELECTRICAL ENGINEERING

Head of department of Electric Power and Electrical

Engineering Department

Ivaschutenko A.S.

Kritsky O.L.

Instructor:

Statistical Methods in Economics

Course Overview

Objectives of sta	 e main objectives of the course are: to provide students with theoretical foundations and methods of theory statistics; to provide students with knowledge of typical economic problems and tistical methods for solving them; to develop practical skills of the statistical methods and theories plication to real data sets.
of sta apj	 statistics; to provide students with knowledge of typical economic problems and tistical methods for solving them; to develop practical skills of the statistical methods and theories
sta apj	 statistics; to provide students with knowledge of typical economic problems and tistical methods for solving them; to develop practical skills of the statistical methods and theories
sta apj	 to provide students with knowledge of typical economic problems and tistical methods for solving them; to develop practical skills of the statistical methods and theories
apj	tistical methods for solving them;to develop practical skills of the statistical methods and theories
	plication to real data sets.
Learning Th	
Learning In	e student must:
Outcomes	
kn	ow:
	 the main notions, features and stages of analysis of stochastic processes and economic models based on them; the key notions and methods of the stochastic theory in the context of the Ito's calculations; the fundamental tasks of the financial mathematic theory and their classical solutions; theoretical basis of the main methods of stochastic processes integration; the stages of investigation of statistical connection between the random solution vector components.
be	 able to: calculate the covariance function of a stochastic process; apply mathematical methods to the investigation of a random sequence convergence; use the univariate and bivariate Ito formula and the variable; calculate stochastic integrals; solve stochastic differential equations or convert them to mathematical physics equations.
pos	ssess:
1. 2. 3.	the main analytical approaches to the probability and stochastic analysis; the methods of the key characteristics calculations in probability analysis of a practical financial tasks; the mathematical symbolism to describe quantitative and qualitative objects interaction.
Course	Course structure and content:
	1. The random process: main notions (4 hours).

<u>a</u>	
Structure	2. Convergence, integration and differentiation of the random processes (3 hours)
	hours).3. Solution of the stochastic differential equations (3 hours).
	 Solution of the stochastic differential equations (5 hours). Partial derivative differential equations (4 hours).
	 Fatual derivative differential equations (4 hours). Stochastic volatility models (4 hours).
	6. Stochastic interest rates models (4 hours).7. Credit risk (4 hours).
	 8. Stochastic obligations (4 hours).
Facilities	Computer classes and Internet technologies
	Computer classes and internet technologies
and	
Equipment	
Grading	In accordance with TPU rating system we use:
Policy	
·	-Current assessment which performed on a regular basis during the semester by
	scoring the quality of mastering of theoretical material and the results of practical
	activities (test, written tasks, laboratory work). Max score for current assessment is
	80 points, min – 55 points.
	_Course final assessment (credit test) is performed at the end of the semester. Max
	score for course final assessment is 20 points.
	Maximum overall rating corresponds to 100 points, min pass score is 55 points.
Taaahing	Compulsory Deadings
Teaching	Compulsory Readings
Aids and	1. Benth F.E. Option Theory with Stochastic Analysis // An Introduction to
Resources	Mathematical Finance. – Springer Verlag. –2002. – 168 p.
	 Embrechts P., Kluppelberg C., Mikosh T., Modeling Extreme Events, Springer
	Verlag, 1997.
	3. G. A. Young, R. L. Smith, Essentials of Statistical Inference, Cambridge Series
	in Statistical and Probabilistic Mathematics, Cambridge University Press,
	2005, 236 p.
	4. Herman J. Bierens, Introduction to the Mathematical and Statistical
	Foundations of Econometrics, Cambridge University Press, 2005, 317 p.
	5. Hull J. Options, Futures, and Other Derivatives // Prentice-Hall, Saddle River.
	– New Jersey. – 2003. –755 p.
	6. Lando D. Credit Risk Modelling. Princeton, NJ: Princeton University Press,
	2004, 312 p.
	7. McNeil A.J., Frey R., Embrechts P., Quantitative Risk Management. Concepts,
	Techniques and Tools // Princeton University Press, Princeton, NJ, 2005.
	8. Rachev S.T., Menn C., Fabozzi F.J., Fat-tailed and Skewed Asset Return
	Distribution. Implications for Risk Management, Portfolio Selection, and
	Option Pricing, John Wiley & Sons, Hoboken, USA, 2005.
	9. Ser–Huang Poon A Practical Guide to Forecasting Financial Market Volatility
	// John Wiley & Sons. –Chichester, England. – 2005.
	10. Wilmott P. Introduces Quantitative Finance. Chichester, West Sussex: John
	Wiley & Sons Ltd., 2007. 2nd Edition. 696 p.
	11. Ajvazyan S.A., Mchitaryan V.S., Applied statistic. Basis of econometrics,
	Uniti-Dana. – Moscow. – 2001. – Vol.2. – 656 p.
	12. Krivilev A.V., Baiss of Matlab. – Leks-kniga, - Moscow. – 2005. – 496 p.
	13. Shiryaev A.N., - Basis of stochastic financial mathematics Nauka

14	Moscow. – 1998. – Vol 2. – 544 p. 4. Lobanov A.A., Chugunov A.V., et.al., Encyclopedia of the financial risk
	management. – Alpina. – 2005. – 878 p.
A	dditional readings
	 A.K. Bera, S. Kim, Testing constancy of correlation and other specifications of the BGARCH model with an application to international equity returns, Journal of Empirical Finance, 2002, 9, pp. 171–195. Ait-Sahalia Y., Brandt M.W., Variable Selection for Portfolio Choice, Journal of Finance, 2001, 56, 4, p. 1297-1351. Ait-Sahalia Y., Lo A.W., Nonparametric risk management and implied risk
	aversion, Journal of Econometrics, 2000, 94, p. 9-51.
	4. Ait-Sahalia Y., Jacod J., Estimating the Degree of Activity of Jumps in High Frequency Data, The Annals of Statistics, 2009, V. 37, 5A , p. 2202–2244.
	5. Ait-Sahalia Y., Mancini L., Out of sample forecasts of quadratic variation, Journal of Econometrics, 2008, 147 , p. 13–33.
	6. Alexander C., Chibumba A., Multivariate Orthogonal Factor GARCH, University of Sussex Discussion Papers in Mathematics, 1998. Access: http://www.ismacentre.rdg.ac.uk, свободный.
	7. Alexander C., Market Models: A Practitioners Guide to Financial Data Analysis, J. Wiley and Sons, 2001.
	8. Alexander C., Principal component models for generating large GARCH Covariance Matrices, Economic Notes, 2002, V. 31, №2, p. 337-359.
	9. Artzner P., Delbaen F., Eber JM., Heath D., Coherent measures of risk, Mathematical Finance, 1998, 6, p. 203–228.
	10. Barndorff-Nielsen O., Shephard N., Measuring the impact of jumps in multivariate price processes using bipower covariation. Working paper, Nuffield College, Oxford University, 2003.
	11. Bliss R.R., Panigirtzoglou N., Option-Implied Risk Aversion Estimates, Journal of Finance, 2004, 59, 1, p. 407-446.
	12. Bollerslev T., Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 1986, 31, p. 307–327.
	13. Bollerslev T., Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH model, The Review of Economics and Statistics, 1990, V.72, №3, p. 498–505.
	 14. Bollerslev T., Woolridge J.M., Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time Varying Covariances, Econometric Reviews, 1992, 11, p. 143-172.
	15. Bollerslev T., Tzuo Hann Law, Tauchen G., Risk, jumps, and diversification, Journal of Econometrics, 2008, 144 , p. 234-256.
	16. Byung Jin Kanga, Tong Suk Kim, Empirical risk aversion functions- estimates and assessment of their reliability, International Review of Financial Analysis, 2007, doi:10.1016/j.irfa.2007.08.002.
	17. C. Brooks, A.D. Clare, J.W. Dalle Molle, G. Persand, A comparison of extreme value theory approaches for determining value at risk, Journal of Empirical Finance, 12, Issue 2, 2005, p.339-352.
	 C. Marinelli, S. d'Addona, S.T. Rachev, A Comparison of some univariate models for Value-at-Risk and expected shortfall, Technical Report of University of Karlsruhe, 2006.
	19. Chen Y., Härdle W., Spokoiny V., Portfolio value at risk based on

independent component analysis, Journal of Computational and Applied Mathematics, 2007, 205, p. 594–607.
20. Cheng G., Li P., Shi P., A new algorithm based on copulas for VaR
valuation with empirical calculations, Theoretical Computer Science, 2007, 378, p. 190–197.
21. D.F. Kraft, R.F. Engle, Autoregressive conditional heteroskedasticity in
multiple time series models. Discussion Paper 82-23, USA, University of California, San Diego, CA, 1982.
22. Dennis Bams, Thorsten Lehnert, Christian C.P. Wolff, An evaluation framework for alternative VaR-models, Journal of International Money and Finance, 24, Issue 6, 2005, p. 944-958.
 23. Dragulescu A.A., Yakovenko V.M. Probability distribution of returns in the Heston model with Stochastic volatility // Quantitative Finance. – 2002. v. 2. – P. 443–453.
 24. Engle R.F., Dynamic conditional correlation – a simple class of multivariate GARCH models, Journal of Business and Economic Statistic, 2002, 20, p. 339 – 350.
25. F.X. Diebold, M. Nerlove, The dynamics of exchange rate volatility: a multivariate latent factor ARCH model. Journal of Applied Econometrics, 1989, 4, p. 1–21.
 26. Fiorentini G., Leon A., Rubio G. Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market //Journal of Empirical Finance. – 2002. – v. 9. – P. 225–255.
27. G. Samorodnitsky, M.S. Taqqu, Stable Non–Gaussian Random Processes, New York, Chapmen and Hall Press, 1994.
28. Giamouridis D., Vrontos I., Hedge fund portfolio construction: A comparison of static and dynamic approaches, Journal of Banking & Finance, 2007, 31, p. 199–217.
29. Heston S.L. A closed form solution for options with stochastic volatility with applications to bond and currency option // Rev. Financial Studies. – 1993. – v.6. – P. 327–343.
30. Hong Liu, Optimal Consumption and Investment with Transaction Costs and Multiple Risky Assets, Journal of Finance, 2004, 59, 1, p. 289-338.
31. Hull J., White A. The Pricing of Options on Assets with Stochastic
Volatility Models // Journal of Finance. – 1987. – v. 42. – P. 281– 300. 32. I.D. Vrontos, P. Dellaportas, D.N. Politis, A full-factor multivariate
GARCH model, Econometrics Journal, 2003, 6, pp. 312–334.
33. Janecek K., Shreve S.E., Asymptotic analysis for optimal investment and consumption with transaction costs, Finance and Stochastics, 2004, 8, p. 181-206.
 34. Judd K.L., Kubler F., Schmedders K., Asset Trading Volume with Dynamically Complete Markets and Heterogeneous Agents, Journal of Finance, 2003, 58, 5, p. 2203-2218.
35. Kumar M., Persaud A., Pure contagion and investors' shifting risk appetite: analytical issues and empirical evidence, International Finance, 2002, 5, 3,
p. 401–436.
36. M. Billio, L. Pelizzon, Value-at-risk: a multivariate switching regime approach, Journal of Empirical Finance, 7, 2000, p. 531–554.
37. M. Pelagatti, S. Rondena, Dynamic Conditional Correlation with Elliptical Distributions, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica, Working Papers 20060508, 2004.
38. Manganelli S., Engle R.F., CAViaR: Conditional Value at Risk by

r	
	Quantile Regression, NBER, 1999, Working Paper 7341.
	39. Merton R.C. Option Pricing When Underlying Stock Returns Are
	Discontinuous // Journal of Financial Economics. – 1976. – v. 3. – P. 125
	40. P. Giot, S. Laurent, Value-at-Risk for long and short trading positions,
	Journal of Applied Econometrics, 18, 2003, p. 641–664.
	41. Poterba J.M., Stock Market Wealth and Consumption, Journal of
	Economic Perspectives, 2000, 14, 2, p. 99-118.
	42. R. Engle, Autoregressive Conditional Heteroskedasticity with Estimates of
	the Variance of United Kingdom Inflation, Econometrica, 1982, V. 50, pp.
	987-1007.
	43. R.F. Engle, C.W.J. Granger, D. F. Kraft, Combining competing forecasts
	of inflation using a bivariate ARCH model. Journal of Economic Dynamics
	and Control, 1984, 8, p. 151–165.
	44. Rosenberg J.V., Engle R.F., Empirical pricing kernels, Journal of Financial
	Economics, 2002, 64, p. 341–372.
	45. S. Manganelli, Engle R.F., CAViaR: Conditional Value at Risk by
	Quantile Regression, NBER, 1999, Working Paper 7341.
	46. S. Stoyanov, G. Samorodinsky, S.T. Rachev, S. Ortobelli, Computing the
	portfolio Conditional Value–At–Risk in the α –stable case, Technical Depart of University of Varlamba 2004
	Report of University of Karlsruhe, 2004.
	47. Sansone A., Garofalo G., Asset price dynamics in a financial market with
	heterogeneous trading strategies and time delays, Physica A, 2007, 382, p. 247–257.
	48. Shepherd N., Harvey A. An assessing of stochastic volatility model
	coefficients// Journal of Business and Econ stat. – 1996. – v.14. – P. 429–
	434.
	49. T. Bolerslev, R. Engle, J. Wooldridge, A capital asset pricing model with
	time varying covariances, Journal of Political Economy, 1988, 96, p. 116 –
	131.
	50. T. Jeantheau, Strong Consistency of Estimators for Multivariate ARCH
	models, Econometric Theory, 1998, 14, 70–86.
	51. Tomety F.E., Worthmann K. Monte-Carlo Methode und stochastische
	Differentialgleichungen // Preprint, 16 Juny 2004.
	52. Vicente R., at al. Common Underlying Dynamics in an Emerging Market:
	From Minutes to Months // arXiv:cond-mat/0402185. – v.1. – 6 Feb 2004.
	-11 p.
	53. Vrontos I.D., Dellaportas P., Politis D.N., A full-factor multivariate
	GARCH model, Econometrics Journal, 2003, 6, pp. 312–334.
	54. Zhang, L., Mykland P.A., Aït-Sahalia Y., A tale of two time scales:
	Determining integrated volatility with noisy high-frequency data, Journal
	of the American Statistical Association, 2005b, 100 , p. 1394-1411.
	55. Belsner O.A., Kritsky O.L., An application of a univariate STS distribution
	to fund indexes modelling, Iznestya TPU, 2007, vol. 3, 1, p. 45-50.
	56. Buhbinder G.L., Chistilin K.M., Russian fund market within the Heston
	model framework, Mathematical modelling. – 2005. – vol. 17 #10. – p.
	31-38
	57. Buhbinder G.L., Chistilin K.M., Stochastic dynamic of the RAO ES stock
	prices, Mathematical modelling. – 2005. – vol. 17 #2. – p. 119-125.
	58. Mathematical models and methods o the quantitative analysis of highly
	volatile stock markets, Dissertation, 05.13.18, defended 24.11.06, Tver,
	2006, 220 p.

	 59. Schetinin E.Yu., Statistical analysis of the extreme dependences of Russian stock market, Finance and credit. – 2005. – vol. 22 #190. – p. 44-51 60. Schetinin E.Yu., Lapushkin A.S., Statistical methods and mathematical models of financial risks estimation, Mathematical modelling. – 2004. – vol. 16 #5. – p. 40-54
	Internet resources <u>http://portal.tpu.ru</u> – personal site of the lecturer O.L.Kritsky
	<u>http://poiskknig.ru</u> – the Electronic textbooks library (Moscow State University), Moscow <u>http://www.nsu.ru/mmf/tvims/</u> - site of the Department of Probability theory and
	mathematical statistic, Novosibirsk State University, Novosibirsk http://www.mathnet.ru.ru/ - Russian mathematical portal
	http://www.lib.mexmat.ru – the Electronic library of the faculty of mathematics and mechanics, Moscow State University
	<u>http://onlinelibrary.wiley.com</u> – scientific journals published by Wiley&Sons <u>http://www.sciencedirect.com/</u> - scientific journals published by the Elsevier
Instructor	Kritsky O.L., olegkol@tpu.ru